Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L.

Identifieur interne : 000B69 ( PubMed/Corpus ); précédent : 000B68; suivant : 000B70

Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L.

Auteurs : Stephen A. Goldstein ; Joshua M. Thornbrough ; Rong Zhang ; Babal K. Jha ; Yize Li ; Ruth Elliott ; Katherine Quiroz-Figueroa ; Annie I. Chen ; Robert H. Silverman ; Susan R. Weiss

Source :

RBID : pubmed:28003490

English descriptors

Abstract

Viruses in the family Coronaviridae, within the order Nidovirales, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3' ends of their genomes, that often act as host cell antagonists. We previously showed that 2',5'-phosphodiesterases (2',5'-PDEs) encoded by the prototypical Betacoronavirus, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2',5'-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHVMut) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2',5'-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHVMut in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHVMut replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it.IMPORTANCE Viruses in the family Coronaviridae include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus Betacoronavirus, mouse hepatitis virus (MHV) and MERS-CoV, encode 2',5'-phosphodiesterases (2',5'-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family Coronaviridae, presenting a possible broad-spectrum therapeutic target.

DOI: 10.1128/JVI.02201-16
PubMed: 28003490

Links to Exploration step

pubmed:28003490

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L.</title>
<author>
<name sortKey="Goldstein, Stephen A" sort="Goldstein, Stephen A" uniqKey="Goldstein S" first="Stephen A" last="Goldstein">Stephen A. Goldstein</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thornbrough, Joshua M" sort="Thornbrough, Joshua M" uniqKey="Thornbrough J" first="Joshua M" last="Thornbrough">Joshua M. Thornbrough</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Rong" sort="Zhang, Rong" uniqKey="Zhang R" first="Rong" last="Zhang">Rong Zhang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jha, Babal K" sort="Jha, Babal K" uniqKey="Jha B" first="Babal K" last="Jha">Babal K. Jha</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yize" sort="Li, Yize" uniqKey="Li Y" first="Yize" last="Li">Yize Li</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Elliott, Ruth" sort="Elliott, Ruth" uniqKey="Elliott R" first="Ruth" last="Elliott">Ruth Elliott</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quiroz Figueroa, Katherine" sort="Quiroz Figueroa, Katherine" uniqKey="Quiroz Figueroa K" first="Katherine" last="Quiroz-Figueroa">Katherine Quiroz-Figueroa</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Annie I" sort="Chen, Annie I" uniqKey="Chen A" first="Annie I" last="Chen">Annie I. Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Silverman, Robert H" sort="Silverman, Robert H" uniqKey="Silverman R" first="Robert H" last="Silverman">Robert H. Silverman</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weiss, Susan R" sort="Weiss, Susan R" uniqKey="Weiss S" first="Susan R" last="Weiss">Susan R. Weiss</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA weisssr@upenn.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28003490</idno>
<idno type="pmid">28003490</idno>
<idno type="doi">10.1128/JVI.02201-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000B69</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L.</title>
<author>
<name sortKey="Goldstein, Stephen A" sort="Goldstein, Stephen A" uniqKey="Goldstein S" first="Stephen A" last="Goldstein">Stephen A. Goldstein</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thornbrough, Joshua M" sort="Thornbrough, Joshua M" uniqKey="Thornbrough J" first="Joshua M" last="Thornbrough">Joshua M. Thornbrough</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Rong" sort="Zhang, Rong" uniqKey="Zhang R" first="Rong" last="Zhang">Rong Zhang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jha, Babal K" sort="Jha, Babal K" uniqKey="Jha B" first="Babal K" last="Jha">Babal K. Jha</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yize" sort="Li, Yize" uniqKey="Li Y" first="Yize" last="Li">Yize Li</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Elliott, Ruth" sort="Elliott, Ruth" uniqKey="Elliott R" first="Ruth" last="Elliott">Ruth Elliott</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quiroz Figueroa, Katherine" sort="Quiroz Figueroa, Katherine" uniqKey="Quiroz Figueroa K" first="Katherine" last="Quiroz-Figueroa">Katherine Quiroz-Figueroa</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Annie I" sort="Chen, Annie I" uniqKey="Chen A" first="Annie I" last="Chen">Annie I. Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Silverman, Robert H" sort="Silverman, Robert H" uniqKey="Silverman R" first="Robert H" last="Silverman">Robert H. Silverman</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weiss, Susan R" sort="Weiss, Susan R" uniqKey="Weiss S" first="Susan R" last="Weiss">Susan R. Weiss</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA weisssr@upenn.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenine Nucleotides (chemistry)</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Catalytic Domain</term>
<term>Cell Line</term>
<term>Conserved Sequence</term>
<term>Cricetinae</term>
<term>Endoribonucleases (metabolism)</term>
<term>Enzyme Activation</term>
<term>Macrophages (virology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Middle East Respiratory Syndrome Coronavirus (enzymology)</term>
<term>Murine hepatitis virus (enzymology)</term>
<term>Oligoribonucleotides (chemistry)</term>
<term>Phosphoric Diester Hydrolases (chemistry)</term>
<term>Phosphoric Diester Hydrolases (physiology)</term>
<term>Torovirus (enzymology)</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (physiology)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Adenine Nucleotides</term>
<term>Oligoribonucleotides</term>
<term>Phosphoric Diester Hydrolases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Endoribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Murine hepatitis virus</term>
<term>Torovirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Phosphoric Diester Hydrolases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Catalytic Domain</term>
<term>Cell Line</term>
<term>Conserved Sequence</term>
<term>Cricetinae</term>
<term>Enzyme Activation</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viruses in the family
<i>Coronaviridae</i>
, within the order
<i>Nidovirales</i>
, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3' ends of their genomes, that often act as host cell antagonists. We previously showed that 2',5'-phosphodiesterases (2',5'-PDEs) encoded by the prototypical
<i>Betacoronavirus</i>
, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2',5'-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHV
<sup>Mut</sup>
) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2',5'-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHV
<sup>Mut</sup>
in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHV
<sup>Mut</sup>
replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it.
<b>IMPORTANCE</b>
Viruses in the family
<i>Coronaviridae</i>
include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus
<i>Betacoronavirus</i>
, mouse hepatitis virus (MHV) and MERS-CoV, encode 2',5'-phosphodiesterases (2',5'-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family
<i>Coronaviridae</i>
, presenting a possible broad-spectrum therapeutic target.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28003490</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e02201-16</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.02201-16</ELocationID>
<Abstract>
<AbstractText>Viruses in the family
<i>Coronaviridae</i>
, within the order
<i>Nidovirales</i>
, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3' ends of their genomes, that often act as host cell antagonists. We previously showed that 2',5'-phosphodiesterases (2',5'-PDEs) encoded by the prototypical
<i>Betacoronavirus</i>
, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2',5'-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHV
<sup>Mut</sup>
) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2',5'-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHV
<sup>Mut</sup>
in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHV
<sup>Mut</sup>
replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it.
<b>IMPORTANCE</b>
Viruses in the family
<i>Coronaviridae</i>
include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus
<i>Betacoronavirus</i>
, mouse hepatitis virus (MHV) and MERS-CoV, encode 2',5'-phosphodiesterases (2',5'-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family
<i>Coronaviridae</i>
, presenting a possible broad-spectrum therapeutic target.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Goldstein</LastName>
<ForeName>Stephen A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thornbrough</LastName>
<ForeName>Joshua M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Rong</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jha</LastName>
<ForeName>Babal K</ForeName>
<Initials>BK</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7660-5255</Identifier>
<AffiliationInfo>
<Affiliation>Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yize</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elliott</LastName>
<ForeName>Ruth</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Quiroz-Figueroa</LastName>
<ForeName>Katherine</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Annie I</ForeName>
<Initials>AI</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Silverman</LastName>
<ForeName>Robert H</ForeName>
<Initials>RH</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weiss</LastName>
<ForeName>Susan R</ForeName>
<Initials>SR</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8155-4528</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA weisssr@upenn.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F32 AI114143</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI104887</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI114920</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI007324</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000227">Adenine Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009843">Oligoribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>61172-40-5</RegistryNumber>
<NameOfSubstance UI="C023505">2',5'-oligoadenylate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004722">Endoribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.26.-</RegistryNumber>
<NameOfSubstance UI="C031956">2-5A-dependent ribonuclease</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.-</RegistryNumber>
<NameOfSubstance UI="D010727">Phosphoric Diester Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000227" MajorTopicYN="N">Adenine Nucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004722" MajorTopicYN="N">Endoribonucleases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009843" MajorTopicYN="N">Oligoribonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010727" MajorTopicYN="N">Phosphoric Diester Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017003" MajorTopicYN="N">Torovirus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">RNase L</Keyword>
<Keyword MajorTopicYN="Y">interferon antagonist</Keyword>
<Keyword MajorTopicYN="Y">lineage A coronavirus</Keyword>
<Keyword MajorTopicYN="Y">oligoadenylate synthetase</Keyword>
<Keyword MajorTopicYN="Y">phosphodiesterase</Keyword>
<Keyword MajorTopicYN="Y">torovirus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28003490</ArticleId>
<ArticleId IdType="pii">JVI.02201-16</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02201-16</ArticleId>
<ArticleId IdType="pmc">PMC5309944</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Dec;81(23 ):12720-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transbound Emerg Dis. 2016 Aug;63(4):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27213718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Oct 25;289(2):230-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2003;16(4):461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14733734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Aug;67(8):4504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8392595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Med. 2005;116:103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Dec 1;30(23):5229-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1999 Feb;15(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10024467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Aug 11;18(15):4535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2388833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23878220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002090</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1999 Oct 15;163(8):4453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10510387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2004 Apr;10(2):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15204926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Sep 27;12(9):e1005883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27676249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jun 14;11(6):607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1993;129(1-4):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8385918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Jul;89(13):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25878106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Apr;83(8):3743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Mar 29;7(2):e00258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Feb 1;375(5):1329-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18082768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Dec 5;369(1):92-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Aug;78(16):8824-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Oct;166(2):415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2845655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Nov 3;16(21):6355-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2011;81:85-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):7270-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Jul 01;5(4):e01312-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24987090</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28003490
   |texte=   Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28003490" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021