Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pathogen cross-transmission via building sanitary plumbing systems in a full scale pilot test-rig.

Identifieur interne : 000B54 ( PubMed/Corpus ); précédent : 000B53; suivant : 000B55

Pathogen cross-transmission via building sanitary plumbing systems in a full scale pilot test-rig.

Auteurs : Michael Gormley ; Thomas J. Aspray ; David A. Kelly ; Cristina Rodriguez-Gil

Source :

RBID : pubmed:28187135

English descriptors

Abstract

The WHO Consensus Document on the epidemiology of the SARS epidemic in 2003, included a report on a concentrated outbreak in one Hong Kong housing block which was considered a 'super-spreading event'. The WHO report conjectured that the sanitary plumbing system was one transmission route for the virus. Empty U-traps allowed the aerosolised virus to enter households from the sewerage system. No biological evidence was presented. This research reports evidence that pathogens can be aerosolised and transported on airstreams within sanitary plumbing systems and enter buildings via empty U-traps. A sanitary plumbing system was built, representing two floors of a building, with simulated toilet flushes on the lower floor and a sterile chamber with extractor fan on the floor above. Cultures of a model organism, Pseudomonas putida at 106-109 cfu ml-1 in 0·85% NaCl were flushed into the system in volumes of 6 to 20 litres to represent single or multiple toilet flushes. Air and surface samples were cultured on agar plates and assessed qualitatively and semi-quantitatively. Flushing from a toilet into a sanitary plumbing system generated enough turbulence to aerosolise pathogens. Typical sanitary plumbing system airflows (between 20-30 ls-1) were sufficient to carry aerosolised pathogens between different floors of a building. Empty U-traps allowed aerosolised pathogens to enter the chamber, encouraging cross-transmission. All parts of the system were found to be contaminated post-flush. Empty U-traps have been observed in many buildings and a risk assessment indicates the potential for high risk cross-transmission under defect conditions in buildings with high pathogen loading such as hospitals. Under defective conditions (which are not uncommon) aerosolised pathogens can be carried on the airflows within sanitary plumbing systems. Our findings show that greater consideration should be given to this mode of pathogen transmission.

DOI: 10.1371/journal.pone.0171556
PubMed: 28187135

Links to Exploration step

pubmed:28187135

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pathogen cross-transmission via building sanitary plumbing systems in a full scale pilot test-rig.</title>
<author>
<name sortKey="Gormley, Michael" sort="Gormley, Michael" uniqKey="Gormley M" first="Michael" last="Gormley">Michael Gormley</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aspray, Thomas J" sort="Aspray, Thomas J" uniqKey="Aspray T" first="Thomas J" last="Aspray">Thomas J. Aspray</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kelly, David A" sort="Kelly, David A" uniqKey="Kelly D" first="David A" last="Kelly">David A. Kelly</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Gil, Cristina" sort="Rodriguez Gil, Cristina" uniqKey="Rodriguez Gil C" first="Cristina" last="Rodriguez-Gil">Cristina Rodriguez-Gil</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28187135</idno>
<idno type="pmid">28187135</idno>
<idno type="doi">10.1371/journal.pone.0171556</idno>
<idno type="wicri:Area/PubMed/Corpus">000B54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pathogen cross-transmission via building sanitary plumbing systems in a full scale pilot test-rig.</title>
<author>
<name sortKey="Gormley, Michael" sort="Gormley, Michael" uniqKey="Gormley M" first="Michael" last="Gormley">Michael Gormley</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aspray, Thomas J" sort="Aspray, Thomas J" uniqKey="Aspray T" first="Thomas J" last="Aspray">Thomas J. Aspray</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kelly, David A" sort="Kelly, David A" uniqKey="Kelly D" first="David A" last="Kelly">David A. Kelly</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Gil, Cristina" sort="Rodriguez Gil, Cristina" uniqKey="Rodriguez Gil C" first="Cristina" last="Rodriguez-Gil">Cristina Rodriguez-Gil</name>
<affiliation>
<nlm:affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Infections (transmission)</term>
<term>Humans</term>
<term>Pseudomonas (pathogenicity)</term>
<term>Sanitary Engineering (methods)</term>
<term>Sanitary Engineering (standards)</term>
<term>Sewage (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="microbiology" xml:lang="en">
<term>Sewage</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sanitary Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Sanitary Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Bacterial Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The WHO Consensus Document on the epidemiology of the SARS epidemic in 2003, included a report on a concentrated outbreak in one Hong Kong housing block which was considered a 'super-spreading event'. The WHO report conjectured that the sanitary plumbing system was one transmission route for the virus. Empty U-traps allowed the aerosolised virus to enter households from the sewerage system. No biological evidence was presented. This research reports evidence that pathogens can be aerosolised and transported on airstreams within sanitary plumbing systems and enter buildings via empty U-traps. A sanitary plumbing system was built, representing two floors of a building, with simulated toilet flushes on the lower floor and a sterile chamber with extractor fan on the floor above. Cultures of a model organism, Pseudomonas putida at 106-109 cfu ml-1 in 0·85% NaCl were flushed into the system in volumes of 6 to 20 litres to represent single or multiple toilet flushes. Air and surface samples were cultured on agar plates and assessed qualitatively and semi-quantitatively. Flushing from a toilet into a sanitary plumbing system generated enough turbulence to aerosolise pathogens. Typical sanitary plumbing system airflows (between 20-30 ls-1) were sufficient to carry aerosolised pathogens between different floors of a building. Empty U-traps allowed aerosolised pathogens to enter the chamber, encouraging cross-transmission. All parts of the system were found to be contaminated post-flush. Empty U-traps have been observed in many buildings and a risk assessment indicates the potential for high risk cross-transmission under defect conditions in buildings with high pathogen loading such as hospitals. Under defective conditions (which are not uncommon) aerosolised pathogens can be carried on the airflows within sanitary plumbing systems. Our findings show that greater consideration should be given to this mode of pathogen transmission.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28187135</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Pathogen cross-transmission via building sanitary plumbing systems in a full scale pilot test-rig.</ArticleTitle>
<Pagination>
<MedlinePgn>e0171556</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0171556</ELocationID>
<Abstract>
<AbstractText>The WHO Consensus Document on the epidemiology of the SARS epidemic in 2003, included a report on a concentrated outbreak in one Hong Kong housing block which was considered a 'super-spreading event'. The WHO report conjectured that the sanitary plumbing system was one transmission route for the virus. Empty U-traps allowed the aerosolised virus to enter households from the sewerage system. No biological evidence was presented. This research reports evidence that pathogens can be aerosolised and transported on airstreams within sanitary plumbing systems and enter buildings via empty U-traps. A sanitary plumbing system was built, representing two floors of a building, with simulated toilet flushes on the lower floor and a sterile chamber with extractor fan on the floor above. Cultures of a model organism, Pseudomonas putida at 106-109 cfu ml-1 in 0·85% NaCl were flushed into the system in volumes of 6 to 20 litres to represent single or multiple toilet flushes. Air and surface samples were cultured on agar plates and assessed qualitatively and semi-quantitatively. Flushing from a toilet into a sanitary plumbing system generated enough turbulence to aerosolise pathogens. Typical sanitary plumbing system airflows (between 20-30 ls-1) were sufficient to carry aerosolised pathogens between different floors of a building. Empty U-traps allowed aerosolised pathogens to enter the chamber, encouraging cross-transmission. All parts of the system were found to be contaminated post-flush. Empty U-traps have been observed in many buildings and a risk assessment indicates the potential for high risk cross-transmission under defect conditions in buildings with high pathogen loading such as hospitals. Under defective conditions (which are not uncommon) aerosolised pathogens can be carried on the airflows within sanitary plumbing systems. Our findings show that greater consideration should be given to this mode of pathogen transmission.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gormley</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3418-4621</Identifier>
<AffiliationInfo>
<Affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aspray</LastName>
<ForeName>Thomas J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez-Gil</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012722">Sewage</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001424" MajorTopicYN="N">Bacterial Infections</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012498" MajorTopicYN="N">Sanitary Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000592" MajorTopicYN="Y">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012722" MajorTopicYN="N">Sewage</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>MG is a named inventor on a Patent for a defective trap identification system. MG received funding to do the research from Dyteqta Ltd. who played no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had final responsibility for the decision to submit for publication. TJA DAK and CR have declared that no competing interests exist. Patent details (Michael Gormley named inventor): Faulty Trap Identification system - Patent no. GB2441788 publication date 9th November 2011 and US 2010/0000298A1 - publication date Jan 7 2010. Patent owned by Heriot-Watt University and licensed to Dyteqta Ltd. This does not alter our adherence to PLOS ONE policies on sharing data and materials.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28187135</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0171556</ArticleId>
<ArticleId IdType="pii">PONE-D-16-21118</ArticleId>
<ArticleId IdType="pmc">PMC5302810</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Appl Microbiol. 2005;99(2):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2005 Oct 1;54(2):317-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1975 Aug;30(2):229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">169732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofouling. 2015 ;31(9-10):677-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26652665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2000 Jul;89(1):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10945790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2011 Mar;77(3):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21194796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Apr;61(4):1232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Oct;60(10):3732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7986046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2015 Apr;89(4):324-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25623205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28187135
   |texte=   Pathogen cross-transmission via building sanitary plumbing systems in a full scale pilot test-rig.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28187135" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021