Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

Identifieur interne : 000B09 ( PubMed/Corpus ); précédent : 000B08; suivant : 000B10

Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

Auteurs : Lennart Michel Reinke ; Martin Spiegel ; Teresa Plegge ; Anika Hartleib ; Inga Nehlmeier ; Stefanie Gierer ; Markus Hoffmann ; Heike Hofmann-Winkler ; Michael Winkler ; Stefan Pöhlmann

Source :

RBID : pubmed:28636671

English descriptors

Abstract

The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.

DOI: 10.1371/journal.pone.0179177
PubMed: 28636671

Links to Exploration step

pubmed:28636671

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.</title>
<author>
<name sortKey="Reinke, Lennart Michel" sort="Reinke, Lennart Michel" uniqKey="Reinke L" first="Lennart Michel" last="Reinke">Lennart Michel Reinke</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spiegel, Martin" sort="Spiegel, Martin" uniqKey="Spiegel M" first="Martin" last="Spiegel">Martin Spiegel</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plegge, Teresa" sort="Plegge, Teresa" uniqKey="Plegge T" first="Teresa" last="Plegge">Teresa Plegge</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartleib, Anika" sort="Hartleib, Anika" uniqKey="Hartleib A" first="Anika" last="Hartleib">Anika Hartleib</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nehlmeier, Inga" sort="Nehlmeier, Inga" uniqKey="Nehlmeier I" first="Inga" last="Nehlmeier">Inga Nehlmeier</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gierer, Stefanie" sort="Gierer, Stefanie" uniqKey="Gierer S" first="Stefanie" last="Gierer">Stefanie Gierer</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Markus" sort="Hoffmann, Markus" uniqKey="Hoffmann M" first="Markus" last="Hoffmann">Markus Hoffmann</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hofmann Winkler, Heike" sort="Hofmann Winkler, Heike" uniqKey="Hofmann Winkler H" first="Heike" last="Hofmann-Winkler">Heike Hofmann-Winkler</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Winkler, Michael" sort="Winkler, Michael" uniqKey="Winkler M" first="Michael" last="Winkler">Michael Winkler</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28636671</idno>
<idno type="pmid">28636671</idno>
<idno type="doi">10.1371/journal.pone.0179177</idno>
<idno type="wicri:Area/PubMed/Corpus">000B09</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.</title>
<author>
<name sortKey="Reinke, Lennart Michel" sort="Reinke, Lennart Michel" uniqKey="Reinke L" first="Lennart Michel" last="Reinke">Lennart Michel Reinke</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spiegel, Martin" sort="Spiegel, Martin" uniqKey="Spiegel M" first="Martin" last="Spiegel">Martin Spiegel</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plegge, Teresa" sort="Plegge, Teresa" uniqKey="Plegge T" first="Teresa" last="Plegge">Teresa Plegge</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartleib, Anika" sort="Hartleib, Anika" uniqKey="Hartleib A" first="Anika" last="Hartleib">Anika Hartleib</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nehlmeier, Inga" sort="Nehlmeier, Inga" uniqKey="Nehlmeier I" first="Inga" last="Nehlmeier">Inga Nehlmeier</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gierer, Stefanie" sort="Gierer, Stefanie" uniqKey="Gierer S" first="Stefanie" last="Gierer">Stefanie Gierer</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Markus" sort="Hoffmann, Markus" uniqKey="Hoffmann M" first="Markus" last="Hoffmann">Markus Hoffmann</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hofmann Winkler, Heike" sort="Hofmann Winkler, Heike" uniqKey="Hofmann Winkler H" first="Heike" last="Hofmann-Winkler">Heike Hofmann-Winkler</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Winkler, Michael" sort="Winkler, Michael" uniqKey="Winkler M" first="Michael" last="Winkler">Michael Winkler</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
<affiliation>
<nlm:affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>HEK293 Cells</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Mutation (genetics)</term>
<term>Protein Transport</term>
<term>Serine Endopeptidases (genetics)</term>
<term>Serine Endopeptidases (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Serine Endopeptidases</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Serine Endopeptidases</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>HEK293 Cells</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Protein Transport</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28636671</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.</ArticleTitle>
<Pagination>
<MedlinePgn>e0179177</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0179177</ELocationID>
<Abstract>
<AbstractText>The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reinke</LastName>
<ForeName>Lennart Michel</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spiegel</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institut für Mikrobiologie und Virologie, Medizinische Hochschule Brandenburg Theodor Fontane, Senftenberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plegge</LastName>
<ForeName>Teresa</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hartleib</LastName>
<ForeName>Anika</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nehlmeier</LastName>
<ForeName>Inga</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gierer</LastName>
<ForeName>Stefanie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hofmann-Winkler</LastName>
<ForeName>Heike</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Winkler</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pöhlmann</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6086-9136</Identifier>
<AffiliationInfo>
<Affiliation>Abteilung Infektionsbiologie, Deutsches Primatenzentrum, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C421305">TMPRSS2 protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28636671</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0179177</ArticleId>
<ArticleId IdType="pii">PONE-D-17-02574</ArticleId>
<ArticleId IdType="pmc">PMC5479546</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2004 Nov;4(11):663-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Nov 17;11(11):e0166013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27855227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(10):5608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367 (19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2014 Sep 26;6(9):3683-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25256397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 15;108(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Dec;100(3):605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8887-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 May 30;45(21):6570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16716067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2004 Oct;12(10):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Jan 5;305(1):115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):4744-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Oct 15;212(8):1214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25904605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 May 10;413(2):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jul 5;350(2):358-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2015 Sep 5;386(9997):995-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26049252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 19;281(20):14144-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2015 Apr;116:76-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25666761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Nov 17;4(11):e7870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jun;84(11):5605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(12):e1003774</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28636671
   |texte=   Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28636671" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021