Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.

Identifieur interne : 000A95 ( PubMed/Corpus ); précédent : 000A94; suivant : 000A96

Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.

Auteurs : Shenglan Xiao ; Yuguo Li ; Tze-Wai Wong ; David S C. Hui

Source :

RBID : pubmed:28727803

English descriptors

Abstract

The epidemic of severe acute respiratory syndrome (SARS) had a significant effect on global society in the early 2000s and the potential of its resurgence exists. Studies on the modes of transmission of SARS are limited though a number of outbreak studies have revealed the possible airborne route. To develop more specific and effective control strategies, we conducted a detailed mechanism-based investigation that explored the role of fomite transmission in the well-known Ward 8A outbreak. We considered three hypothetical transmission routes, i.e., the long-range airborne, fomite and combined routes, in 1,744 scenarios with combinations of some important parameters. A multi-agent model was used to predict the infection risk distributions of the three hypothetical routes. Model selection was carried out for different scenarios to compare the distributions of infection risk with that of the reported attack rates and select the hypotheses with the best fitness. Our results reveal that under the assumed conditions, the SARS coronavirus was most possible to have spread via the combined long-range airborne and fomite routes, and that the fomite route played a non-negligible role in the transmission.

DOI: 10.1371/journal.pone.0181558
PubMed: 28727803

Links to Exploration step

pubmed:28727803

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.</title>
<author>
<name sortKey="Xiao, Shenglan" sort="Xiao, Shenglan" uniqKey="Xiao S" first="Shenglan" last="Xiao">Shenglan Xiao</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yuguo" sort="Li, Yuguo" uniqKey="Li Y" first="Yuguo" last="Li">Yuguo Li</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wong, Tze Wai" sort="Wong, Tze Wai" uniqKey="Wong T" first="Tze-Wai" last="Wong">Tze-Wai Wong</name>
<affiliation>
<nlm:affiliation>JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hui, David S C" sort="Hui, David S C" uniqKey="Hui D" first="David S C" last="Hui">David S C. Hui</name>
<affiliation>
<nlm:affiliation>Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28727803</idno>
<idno type="pmid">28727803</idno>
<idno type="doi">10.1371/journal.pone.0181558</idno>
<idno type="wicri:Area/PubMed/Corpus">000A95</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.</title>
<author>
<name sortKey="Xiao, Shenglan" sort="Xiao, Shenglan" uniqKey="Xiao S" first="Shenglan" last="Xiao">Shenglan Xiao</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yuguo" sort="Li, Yuguo" uniqKey="Li Y" first="Yuguo" last="Li">Yuguo Li</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wong, Tze Wai" sort="Wong, Tze Wai" uniqKey="Wong T" first="Tze-Wai" last="Wong">Tze-Wai Wong</name>
<affiliation>
<nlm:affiliation>JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hui, David S C" sort="Hui, David S C" uniqKey="Hui D" first="David S C" last="Hui">David S C. Hui</name>
<affiliation>
<nlm:affiliation>Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Air</term>
<term>Cross Infection (epidemiology)</term>
<term>Cross Infection (transmission)</term>
<term>Disease Outbreaks</term>
<term>Fomites (virology)</term>
<term>Hong Kong (epidemiology)</term>
<term>Hospitals</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Biological</term>
<term>Mucous Membrane (virology)</term>
<term>Nurses</term>
<term>Physicians</term>
<term>Respiratory System (virology)</term>
<term>Risk</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome (epidemiology)</term>
<term>Severe Acute Respiratory Syndrome (transmission)</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Cross Infection</term>
<term>Hong Kong</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Cross Infection</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Fomites</term>
<term>Mucous Membrane</term>
<term>Respiratory System</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Air</term>
<term>Disease Outbreaks</term>
<term>Hospitals</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Biological</term>
<term>Nurses</term>
<term>Physicians</term>
<term>Risk</term>
<term>SARS Virus</term>
<term>Touch</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The epidemic of severe acute respiratory syndrome (SARS) had a significant effect on global society in the early 2000s and the potential of its resurgence exists. Studies on the modes of transmission of SARS are limited though a number of outbreak studies have revealed the possible airborne route. To develop more specific and effective control strategies, we conducted a detailed mechanism-based investigation that explored the role of fomite transmission in the well-known Ward 8A outbreak. We considered three hypothetical transmission routes, i.e., the long-range airborne, fomite and combined routes, in 1,744 scenarios with combinations of some important parameters. A multi-agent model was used to predict the infection risk distributions of the three hypothetical routes. Model selection was carried out for different scenarios to compare the distributions of infection risk with that of the reported attack rates and select the hypotheses with the best fitness. Our results reveal that under the assumed conditions, the SARS coronavirus was most possible to have spread via the combined long-range airborne and fomite routes, and that the fomite route played a non-negligible role in the transmission.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28727803</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.</ArticleTitle>
<Pagination>
<MedlinePgn>e0181558</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0181558</ELocationID>
<Abstract>
<AbstractText>The epidemic of severe acute respiratory syndrome (SARS) had a significant effect on global society in the early 2000s and the potential of its resurgence exists. Studies on the modes of transmission of SARS are limited though a number of outbreak studies have revealed the possible airborne route. To develop more specific and effective control strategies, we conducted a detailed mechanism-based investigation that explored the role of fomite transmission in the well-known Ward 8A outbreak. We considered three hypothetical transmission routes, i.e., the long-range airborne, fomite and combined routes, in 1,744 scenarios with combinations of some important parameters. A multi-agent model was used to predict the infection risk distributions of the three hypothetical routes. Model selection was carried out for different scenarios to compare the distributions of infection risk with that of the reported attack rates and select the hypotheses with the best fitness. Our results reveal that under the assumed conditions, the SARS coronavirus was most possible to have spread via the combined long-range airborne and fomite routes, and that the fomite route played a non-negligible role in the transmission.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Shenglan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6265-9199</Identifier>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yuguo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Tze-Wai</ForeName>
<Initials>TW</Initials>
<AffiliationInfo>
<Affiliation>JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hui</LastName>
<ForeName>David S C</ForeName>
<Initials>DSC</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000388" MajorTopicYN="N">Air</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003428" MajorTopicYN="N">Cross Infection</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="Y">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050456" MajorTopicYN="N">Fomites</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006723" MajorTopicYN="N">Hong Kong</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006761" MajorTopicYN="N">Hospitals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009092" MajorTopicYN="N">Mucous Membrane</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009726" MajorTopicYN="N">Nurses</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010820" MajorTopicYN="N">Physicians</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012137" MajorTopicYN="N">Respiratory System</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012306" MajorTopicYN="N">Risk</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="Y">SARS Virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014110" MajorTopicYN="N">Touch</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28727803</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0181558</ArticleId>
<ArticleId IdType="pii">PONE-D-17-09173</ArticleId>
<ArticleId IdType="pmc">PMC5519164</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2004 Apr;10(4):587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2004 Oct;132(5):797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Apr 22;350(17):1731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indoor Air. 2005 Apr;15(2):83-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15737151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11336-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20686038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2007 Apr;7(4):257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1978 May;107(5):421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">665658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2012 Sep;93(Pt 9):1908-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22673931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 May;10(5):782-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Math Biol. 2008 Apr;70(3):820-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18278533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2004 Feb;19(2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):339-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Oct;20(4):660-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Jul 5;376(2):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2016 Mar;92 (3):235-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26597631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 Sep 1;39(5):652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2011 May 6;8(58):699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 May 1;191(9):1472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Risk Anal. 2009 Sep;29(9):1292-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2011 Aug;15(8):e510-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Nov;100(2):407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23994190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 3;361(9368):1519-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12737864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indoor Air. 2005 Apr;15(2):96-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15737152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2015 Oct 14;18(4):398-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26468744</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28727803
   |texte=   Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28727803" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021