Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.

Identifieur interne : 000A73 ( PubMed/Corpus ); précédent : 000A72; suivant : 000A74

NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.

Auteurs : Mukesh Mahajan ; Deepak Chatterjee ; Kannaian Bhuvaneswari ; Shubhadra Pillay ; Surajit Bhattacharjya

Source :

RBID : pubmed:28988778

English descriptors

Abstract

The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15N{1H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.

DOI: 10.1016/j.bbamem.2017.10.002
PubMed: 28988778

Links to Exploration step

pubmed:28988778

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.</title>
<author>
<name sortKey="Mahajan, Mukesh" sort="Mahajan, Mukesh" uniqKey="Mahajan M" first="Mukesh" last="Mahajan">Mukesh Mahajan</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chatterjee, Deepak" sort="Chatterjee, Deepak" uniqKey="Chatterjee D" first="Deepak" last="Chatterjee">Deepak Chatterjee</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhuvaneswari, Kannaian" sort="Bhuvaneswari, Kannaian" uniqKey="Bhuvaneswari K" first="Kannaian" last="Bhuvaneswari">Kannaian Bhuvaneswari</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pillay, Shubhadra" sort="Pillay, Shubhadra" uniqKey="Pillay S" first="Shubhadra" last="Pillay">Shubhadra Pillay</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhattacharjya, Surajit" sort="Bhattacharjya, Surajit" uniqKey="Bhattacharjya S" first="Surajit" last="Bhattacharjya">Surajit Bhattacharjya</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore. Electronic address: surajit@ntu.edu.sg.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:28988778</idno>
<idno type="pmid">28988778</idno>
<idno type="doi">10.1016/j.bbamem.2017.10.002</idno>
<idno type="wicri:Area/PubMed/Corpus">000A73</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.</title>
<author>
<name sortKey="Mahajan, Mukesh" sort="Mahajan, Mukesh" uniqKey="Mahajan M" first="Mukesh" last="Mahajan">Mukesh Mahajan</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chatterjee, Deepak" sort="Chatterjee, Deepak" uniqKey="Chatterjee D" first="Deepak" last="Chatterjee">Deepak Chatterjee</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhuvaneswari, Kannaian" sort="Bhuvaneswari, Kannaian" uniqKey="Bhuvaneswari K" first="Kannaian" last="Bhuvaneswari">Kannaian Bhuvaneswari</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pillay, Shubhadra" sort="Pillay, Shubhadra" uniqKey="Pillay S" first="Shubhadra" last="Pillay">Shubhadra Pillay</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhattacharjya, Surajit" sort="Bhattacharjya, Surajit" uniqKey="Bhattacharjya S" first="Surajit" last="Bhattacharjya">Surajit Bhattacharjya</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore. Electronic address: surajit@ntu.edu.sg.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta. Biomembranes</title>
<idno type="ISSN">0005-2736</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Membrane Fusion</term>
<term>Micelles</term>
<term>Models, Molecular</term>
<term>Peptides (chemistry)</term>
<term>Peptides (metabolism)</term>
<term>Phosphorylcholine (analogs & derivatives)</term>
<term>Phosphorylcholine (chemistry)</term>
<term>Phosphorylcholine (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Multimerization</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Static Electricity</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Phosphorylcholine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptides</term>
<term>Phosphorylcholine</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptides</term>
<term>Phosphorylcholine</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Micelles</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Membrane Fusion</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Multimerization</term>
<term>Static Electricity</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face.
<sup>15</sup>
N{
<sup>1</sup>
H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28988778</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0005-2736</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1860</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta. Biomembranes</Title>
<ISOAbbreviation>Biochim Biophys Acta Biomembr</ISOAbbreviation>
</Journal>
<ArticleTitle>NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.</ArticleTitle>
<Pagination>
<MedlinePgn>407-415</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0005-2736(17)30312-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbamem.2017.10.002</ELocationID>
<Abstract>
<AbstractText>The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face.
<sup>15</sup>
N{
<sup>1</sup>
H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mahajan</LastName>
<ForeName>Mukesh</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chatterjee</LastName>
<ForeName>Deepak</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhuvaneswari</LastName>
<ForeName>Kannaian</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pillay</LastName>
<ForeName>Shubhadra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhattacharjya</LastName>
<ForeName>Surajit</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore. Electronic address: surajit@ntu.edu.sg.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta Biomembr</MedlineTA>
<NlmUniqueID>101731713</NlmUniqueID>
<ISSNLinking>0005-2736</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008823">Micelles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>107-73-3</RegistryNumber>
<NameOfSubstance UI="D010767">Phosphorylcholine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53949-18-1</RegistryNumber>
<NameOfSubstance UI="C028810">dodecylphosphocholine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="Y">Membrane Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008823" MajorTopicYN="N">Micelles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010767" MajorTopicYN="N">Phosphorylcholine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cell fusion</Keyword>
<Keyword MajorTopicYN="Y">Fusion peptide</Keyword>
<Keyword MajorTopicYN="Y">Fusion protein</Keyword>
<Keyword MajorTopicYN="Y">NMR</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV</Keyword>
<Keyword MajorTopicYN="Y">Structure</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28988778</ArticleId>
<ArticleId IdType="pii">S0005-2736(17)30312-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbamem.2017.10.002</ArticleId>
<ArticleId IdType="pmc">PMC7094225</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Structure. 2006 May;14(5):889-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2006 Sep;120(1-2):146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2014;5:3067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24473083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2012 Oct 9;51(40):7863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978677</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Prog Nucl Magn Reson Spectrosc. 2011 Feb;58(1-2):62-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21241884</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Jan;4(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Phys Lipids. 2014 Jul;181:40-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704587</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2017 Jan;27(1):119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1822-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biopolymers. 2007 Jul;86(4):329-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17477394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2001 Jan 20;279(2):371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 May 27;90(12):5586-5600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27030273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2001 May;10(5):934-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11316873</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2005 Jan 25;44(3):947-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Infect Dis. 2017 Jan 5;17(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28056850</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 2001 Aug;8(8):715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11473264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Nov 28;6:37131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892522</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890958</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jul 11;1614(1):14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873762</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2001 Feb 6;40(5):1340-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11170461</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1981 Jul 7;20(14):4093-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7284312</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2005 Jun 01;2:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15927084</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Apr 9;304(5668):237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1983;91:324-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6304451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2012 Nov 30;287(49):40841-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23043104</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Virol. 2011 Dec;1(6):624-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22180768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2016 Oct 26;12(10):e1005813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783711</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta Gen Subj. 2017 Feb;1861(2):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27825831</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2008 Feb;18(2):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227861</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596815</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2004 Jun 3;350(23):2332-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15175434</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1848(2):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25475644</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2015 Aug;23(8):468-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2014 Jul 15;461(2):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766462</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Virol. 2017 Apr;23:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28412285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2008 Aug 5;47(31):8214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Dec;81(Pt 12):2867-2871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690393</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2004 Mar;3(3):215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031735</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2007 May 22;581(11):2150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320081</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chembiochem. 2014 Jun 16;15(9):1257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24829076</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2015 Jun 24;137(24):7548-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26039158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Dec;1778(12):2765-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Apr;1864(4):359-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26773352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;285:25-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2014 Oct;22(10):573-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):550-560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27793589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Feb 10;1661(1):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967479</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jul 11;1614(1):122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873773</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):289-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25078440</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 Mar 08;7:43610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28344321</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Sep;6(2):135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589602</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 2015 May;62(1):81-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25796507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Sep;1838(9):2180-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2001;339:271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11462816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jun;1860(6):1139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26905802</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2001;70:777-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395423</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chembiochem. 2004 Apr 2;5(4):467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15185370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Apr 28;281(17):11965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2014 Mar 6;426(5):1077-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24246500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jul 11;1614(1):116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873772</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28988778
   |texte=   NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28988778" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021