Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication.

Identifieur interne : 000A57 ( PubMed/Corpus ); précédent : 000A56; suivant : 000A58

Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication.

Auteurs : Diede Oudshoorn ; Kevin Rijs ; Ronald W A L. Limpens ; Kevin Groen ; Abraham J. Koster ; Eric J. Snijder ; Marjolein Kikkert ; Montserrat Bárcena

Source :

RBID : pubmed:29162711

English descriptors

Abstract

Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp's) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation.IMPORTANCE The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp's) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.

DOI: 10.1128/mBio.01658-17
PubMed: 29162711

Links to Exploration step

pubmed:29162711

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication.</title>
<author>
<name sortKey="Oudshoorn, Diede" sort="Oudshoorn, Diede" uniqKey="Oudshoorn D" first="Diede" last="Oudshoorn">Diede Oudshoorn</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rijs, Kevin" sort="Rijs, Kevin" uniqKey="Rijs K" first="Kevin" last="Rijs">Kevin Rijs</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limpens, Ronald W A L" sort="Limpens, Ronald W A L" uniqKey="Limpens R" first="Ronald W A L" last="Limpens">Ronald W A L. Limpens</name>
<affiliation>
<nlm:affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Groen, Kevin" sort="Groen, Kevin" uniqKey="Groen K" first="Kevin" last="Groen">Kevin Groen</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koster, Abraham J" sort="Koster, Abraham J" uniqKey="Koster A" first="Abraham J" last="Koster">Abraham J. Koster</name>
<affiliation>
<nlm:affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kikkert, Marjolein" sort="Kikkert, Marjolein" uniqKey="Kikkert M" first="Marjolein" last="Kikkert">Marjolein Kikkert</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.barcena@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barcena, Montserrat" sort="Barcena, Montserrat" uniqKey="Barcena M" first="Montserrat" last="Bárcena">Montserrat Bárcena</name>
<affiliation>
<nlm:affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.barcena@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29162711</idno>
<idno type="pmid">29162711</idno>
<idno type="doi">10.1128/mBio.01658-17</idno>
<idno type="wicri:Area/PubMed/Corpus">000A57</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication.</title>
<author>
<name sortKey="Oudshoorn, Diede" sort="Oudshoorn, Diede" uniqKey="Oudshoorn D" first="Diede" last="Oudshoorn">Diede Oudshoorn</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rijs, Kevin" sort="Rijs, Kevin" uniqKey="Rijs K" first="Kevin" last="Rijs">Kevin Rijs</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limpens, Ronald W A L" sort="Limpens, Ronald W A L" uniqKey="Limpens R" first="Ronald W A L" last="Limpens">Ronald W A L. Limpens</name>
<affiliation>
<nlm:affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Groen, Kevin" sort="Groen, Kevin" uniqKey="Groen K" first="Kevin" last="Groen">Kevin Groen</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koster, Abraham J" sort="Koster, Abraham J" uniqKey="Koster A" first="Abraham J" last="Koster">Abraham J. Koster</name>
<affiliation>
<nlm:affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kikkert, Marjolein" sort="Kikkert, Marjolein" uniqKey="Kikkert M" first="Marjolein" last="Kikkert">Marjolein Kikkert</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.barcena@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barcena, Montserrat" sort="Barcena, Montserrat" uniqKey="Barcena M" first="Montserrat" last="Bárcena">Montserrat Bárcena</name>
<affiliation>
<nlm:affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.barcena@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Line</term>
<term>Cytoplasmic Vesicles (metabolism)</term>
<term>Cytoplasmic Vesicles (ultrastructure)</term>
<term>Cytoplasmic Vesicles (virology)</term>
<term>Electron Microscope Tomography</term>
<term>Endoplasmic Reticulum (virology)</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (metabolism)</term>
<term>Organelle Biogenesis</term>
<term>Proteolysis</term>
<term>RNA, Viral (metabolism)</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Replication (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Viral</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasmic Vesicles</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Cytoplasmic Vesicles</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Cytoplasmic Vesicles</term>
<term>Endoplasmic Reticulum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Electron Microscope Tomography</term>
<term>Humans</term>
<term>Organelle Biogenesis</term>
<term>Proteolysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp's) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation.
<b>IMPORTANCE</b>
The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp's) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29162711</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>11</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01658-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.01658-17</ELocationID>
<Abstract>
<AbstractText>Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp's) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation.
<b>IMPORTANCE</b>
The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp's) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.</AbstractText>
<CopyrightInformation>Copyright © 2017 Oudshoorn et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oudshoorn</LastName>
<ForeName>Diede</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rijs</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Limpens</LastName>
<ForeName>Ronald W A L</ForeName>
<Initials>RWAL</Initials>
<AffiliationInfo>
<Affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Groen</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koster</LastName>
<ForeName>Abraham J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Snijder</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kikkert</LastName>
<ForeName>Marjolein</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.barcena@lumc.nl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bárcena</LastName>
<ForeName>Montserrat</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.barcena@lumc.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000595202">Nsp3 protein, Middle East respiratory syndrome coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022162" MajorTopicYN="N">Cytoplasmic Vesicles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055032" MajorTopicYN="N">Electron Microscope Tomography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001678" MajorTopicYN="N">Organelle Biogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="N">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">convoluted membranes</Keyword>
<Keyword MajorTopicYN="Y">electron tomography</Keyword>
<Keyword MajorTopicYN="Y">membrane structure</Keyword>
<Keyword MajorTopicYN="Y">nidoviruses</Keyword>
<Keyword MajorTopicYN="Y">nonstructural proteins</Keyword>
<Keyword MajorTopicYN="Y">replication complex</Keyword>
<Keyword MajorTopicYN="Y">replication organelle biogenesis</Keyword>
<Keyword MajorTopicYN="Y">replication structures</Keyword>
<Keyword MajorTopicYN="Y">viral factory</Keyword>
<Keyword MajorTopicYN="Y">viral protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29162711</ArticleId>
<ArticleId IdType="pii">mBio.01658-17</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.01658-17</ArticleId>
<ArticleId IdType="pmc">PMC5698553</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Feb;89(4):2080-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25473044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Infect Dis J. 2008 Jan 1;2:52-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19844604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Mar;9(3):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Jun;12(6):844-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2016 Jun 07;8(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27338443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367 (19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Jun 19;173(6):839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:184-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24512893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(1):280-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19846526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Jul 22;8(1):77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20638644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Jul 07;6(4):e00759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2014 Sep;281(18):4085-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Jul 15;79(2):269-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2551778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Mar;73(3):2016-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9971782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2017 Oct;510:165-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28738245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Med Chem. 2010;10(3):323-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20166951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2016 Nov;135:97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27743916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2010 Jul;20(7):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20434915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jan;73(1):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14 (8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Oct;74(19):8953-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Aug 13;4(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23943763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2011 Oct 04;2(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2015 Mar;115:21-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25554382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Mar;95(Pt 3):614-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(10):5059-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Mar;72(3):2265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9499085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2016;96:59-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27712628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Jun;70(6):3478-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8648680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 May;6(5):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21345958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2016 Dec;18(12 ):1691-1708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27218226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(21):11955-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2016 Jul 15;220:70-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27071852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2014 Jun;458-459:125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(24):12392-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jan;86(1):302-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 May 29;10(5):e1004166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24874215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jul;83(13):6957-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19386712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2011 Dec 19;10(2):137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22183253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 Nov 20;3(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 May 25;375(1):118-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18295294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 May;82(Pt 5):985-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12323-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Oct 22;4(5):e00801-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24149513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Dec 6;7(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27923923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Dec 12;289(50):34667-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25320088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Aug;94(Pt 8):1749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Cell Biol. 2014 Mar;33(3):122-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24410069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Oct 01;3(10):e3299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4480-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1996 Jan-Feb;116(1):71-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8742726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(12):e1003056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Dec;2(6):740-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29162711
   |texte=   Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29162711" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021