Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein.

Identifieur interne : 000999 ( PubMed/Corpus ); précédent : 000998; suivant : 000A00

Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein.

Auteurs : Si Min Zhang ; Ying Liao ; Tuan Ling Neo ; Yanning Lu ; Ding Xiang Liu ; Anders Vahlne ; James P. Tam

Source :

RBID : pubmed:29800727

English descriptors

Abstract

Self-binding peptides containing zipper-like sequences, such as the Leu/Ile zipper sequence within the coiled coil regions of proteins and the cross-β spine steric zippers within the amyloid-like fibrils, could bind to the protein-of-origin through homophilic sequence-specific zipper motifs. These self-binding sequences represent opportunities for the development of biochemical tools and/or therapeutics. Here, we report on the identification of a putative self-binding β-zipper-forming peptide within the severe acute respiratory syndrome-associated coronavirus spike (S) protein and its application in viral detection. Peptide array scanning of overlapping peptides covering the entire length of S protein identified 34 putative self-binding peptides of six clusters, five of which contained octapeptide core consensus sequences. The Cluster I consensus octapeptide sequence GINITNFR was predicted by the Eisenberg's 3D profile method to have high amyloid-like fibrillation potential through steric β-zipper formation. Peptide C6 containing the Cluster I consensus sequence was shown to oligomerize and form amyloid-like fibrils. Taking advantage of this, C6 was further applied to detect the S protein expression in vitro by fluorescence staining. Meanwhile, the coiled-coil-forming Leu/Ile heptad repeat sequences within the S protein were under-represented during peptide array scanning, in agreement with that long peptide lengths were required to attain high helix-mediated interaction avidity. The data suggest that short β-zipper-like self-binding peptides within the S protein could be identified through combining the peptide scanning and predictive methods, and could be exploited as biochemical detection reagents for viral infection.

DOI: 10.1016/j.biocel.2018.05.012
PubMed: 29800727

Links to Exploration step

pubmed:29800727

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein.</title>
<author>
<name sortKey="Zhang, Si Min" sort="Zhang, Si Min" uniqKey="Zhang S" first="Si Min" last="Zhang">Si Min Zhang</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Ying" sort="Liao, Ying" uniqKey="Liao Y" first="Ying" last="Liao">Ying Liao</name>
<affiliation>
<nlm:affiliation>Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neo, Tuan Ling" sort="Neo, Tuan Ling" uniqKey="Neo T" first="Tuan Ling" last="Neo">Tuan Ling Neo</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yanning" sort="Lu, Yanning" uniqKey="Lu Y" first="Yanning" last="Lu">Yanning Lu</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vahlne, Anders" sort="Vahlne, Anders" uniqKey="Vahlne A" first="Anders" last="Vahlne">Anders Vahlne</name>
<affiliation>
<nlm:affiliation>Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tam, James P" sort="Tam, James P" uniqKey="Tam J" first="James P" last="Tam">James P. Tam</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. Electronic address: jptam@ntu.edu.sg.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29800727</idno>
<idno type="pmid">29800727</idno>
<idno type="doi">10.1016/j.biocel.2018.05.012</idno>
<idno type="wicri:Area/PubMed/Corpus">000999</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000999</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein.</title>
<author>
<name sortKey="Zhang, Si Min" sort="Zhang, Si Min" uniqKey="Zhang S" first="Si Min" last="Zhang">Si Min Zhang</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Ying" sort="Liao, Ying" uniqKey="Liao Y" first="Ying" last="Liao">Ying Liao</name>
<affiliation>
<nlm:affiliation>Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neo, Tuan Ling" sort="Neo, Tuan Ling" uniqKey="Neo T" first="Tuan Ling" last="Neo">Tuan Ling Neo</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yanning" sort="Lu, Yanning" uniqKey="Lu Y" first="Yanning" last="Lu">Yanning Lu</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vahlne, Anders" sort="Vahlne, Anders" uniqKey="Vahlne A" first="Anders" last="Vahlne">Anders Vahlne</name>
<affiliation>
<nlm:affiliation>Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tam, James P" sort="Tam, James P" uniqKey="Tam J" first="James P" last="Tam">James P. Tam</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. Electronic address: jptam@ntu.edu.sg.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The international journal of biochemistry & cell biology</title>
<idno type="eISSN">1878-5875</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amyloidogenic Proteins (chemistry)</term>
<term>Amyloidogenic Proteins (genetics)</term>
<term>Amyloidogenic Proteins (metabolism)</term>
<term>Animals</term>
<term>Gene Expression</term>
<term>HEK293 Cells</term>
<term>Hemagglutinins (genetics)</term>
<term>Hemagglutinins (metabolism)</term>
<term>Humans</term>
<term>Peptide Library</term>
<term>Peptides (chemical synthesis)</term>
<term>Peptides (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Structure, Secondary</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>SARS Virus (chemistry)</term>
<term>Sf9 Cells</term>
<term>Solid-Phase Synthesis Techniques</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Spodoptera</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amyloidogenic Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amyloidogenic Proteins</term>
<term>Hemagglutinins</term>
<term>Recombinant Fusion Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amyloidogenic Proteins</term>
<term>Hemagglutinins</term>
<term>Peptides</term>
<term>Recombinant Fusion Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Gene Expression</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Peptide Library</term>
<term>Protein Binding</term>
<term>Protein Structure, Secondary</term>
<term>Sf9 Cells</term>
<term>Solid-Phase Synthesis Techniques</term>
<term>Spodoptera</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Self-binding peptides containing zipper-like sequences, such as the Leu/Ile zipper sequence within the coiled coil regions of proteins and the cross-β spine steric zippers within the amyloid-like fibrils, could bind to the protein-of-origin through homophilic sequence-specific zipper motifs. These self-binding sequences represent opportunities for the development of biochemical tools and/or therapeutics. Here, we report on the identification of a putative self-binding β-zipper-forming peptide within the severe acute respiratory syndrome-associated coronavirus spike (S) protein and its application in viral detection. Peptide array scanning of overlapping peptides covering the entire length of S protein identified 34 putative self-binding peptides of six clusters, five of which contained octapeptide core consensus sequences. The Cluster I consensus octapeptide sequence GINITNFR was predicted by the Eisenberg's 3D profile method to have high amyloid-like fibrillation potential through steric β-zipper formation. Peptide C6 containing the Cluster I consensus sequence was shown to oligomerize and form amyloid-like fibrils. Taking advantage of this, C6 was further applied to detect the S protein expression in vitro by fluorescence staining. Meanwhile, the coiled-coil-forming Leu/Ile heptad repeat sequences within the S protein were under-represented during peptide array scanning, in agreement with that long peptide lengths were required to attain high helix-mediated interaction avidity. The data suggest that short β-zipper-like self-binding peptides within the S protein could be identified through combining the peptide scanning and predictive methods, and could be exploited as biochemical detection reagents for viral infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29800727</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-5875</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>101</Volume>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>The international journal of biochemistry & cell biology</Title>
<ISOAbbreviation>Int. J. Biochem. Cell Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein.</ArticleTitle>
<Pagination>
<MedlinePgn>103-112</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1357-2725(18)30124-9</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.biocel.2018.05.012</ELocationID>
<Abstract>
<AbstractText>Self-binding peptides containing zipper-like sequences, such as the Leu/Ile zipper sequence within the coiled coil regions of proteins and the cross-β spine steric zippers within the amyloid-like fibrils, could bind to the protein-of-origin through homophilic sequence-specific zipper motifs. These self-binding sequences represent opportunities for the development of biochemical tools and/or therapeutics. Here, we report on the identification of a putative self-binding β-zipper-forming peptide within the severe acute respiratory syndrome-associated coronavirus spike (S) protein and its application in viral detection. Peptide array scanning of overlapping peptides covering the entire length of S protein identified 34 putative self-binding peptides of six clusters, five of which contained octapeptide core consensus sequences. The Cluster I consensus octapeptide sequence GINITNFR was predicted by the Eisenberg's 3D profile method to have high amyloid-like fibrillation potential through steric β-zipper formation. Peptide C6 containing the Cluster I consensus sequence was shown to oligomerize and form amyloid-like fibrils. Taking advantage of this, C6 was further applied to detect the S protein expression in vitro by fluorescence staining. Meanwhile, the coiled-coil-forming Leu/Ile heptad repeat sequences within the S protein were under-represented during peptide array scanning, in agreement with that long peptide lengths were required to attain high helix-mediated interaction avidity. The data suggest that short β-zipper-like self-binding peptides within the S protein could be identified through combining the peptide scanning and predictive methods, and could be exploited as biochemical detection reagents for viral infection.</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Si Min</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, Singapore; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Neo</LastName>
<ForeName>Tuan Ling</ForeName>
<Initials>TL</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Yanning</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ding Xiang</ForeName>
<Initials>DX</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vahlne</LastName>
<ForeName>Anders</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tam</LastName>
<ForeName>James P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. Electronic address: jptam@ntu.edu.sg.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Int J Biochem Cell Biol</MedlineTA>
<NlmUniqueID>9508482</NlmUniqueID>
<ISSNLinking>1357-2725</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058227">Amyloidogenic Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006388">Hemagglutinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019151">Peptide Library</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058227" MajorTopicYN="N">Amyloidogenic Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006388" MajorTopicYN="N">Hemagglutinins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019151" MajorTopicYN="N">Peptide Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061987" MajorTopicYN="N">Sf9 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060327" MajorTopicYN="N">Solid-Phase Synthesis Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018411" MajorTopicYN="N">Spodoptera</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Class I viral fusion glycoprotein</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV spike protein</Keyword>
<Keyword MajorTopicYN="Y">Steric β-zipper</Keyword>
<Keyword MajorTopicYN="Y">self-binding peptides</Keyword>
<Keyword MajorTopicYN="Y">viral detection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29800727</ArticleId>
<ArticleId IdType="pii">S1357-2725(18)30124-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.biocel.2018.05.012</ArticleId>
<ArticleId IdType="pmc">PMC7108413</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proteomics. 2004 Feb;4(2):492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14760722</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jul 22;333(1):186-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939399</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Oct 10;310(1):78-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14511651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4074-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 May 8;98(10):5578-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331745</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2004 Jul;42(7):3196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>AIDS. 2013 Apr 24;27(7):1081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23324659</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1991 Jul 12;253(5016):164-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1853201</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jul;1804(7):1405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20399286</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Mar;79(5):2678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708987</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Biochem. 2002 Feb;269(3):923-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Jul;73(7):5945-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Jan 28;295(4):1055-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656810</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2011 Dec;20(12):2125-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21922588</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Oct;61(19-20):2428-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15526150</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805776</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 May 24;447(7143):453-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468747</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Jul 31;10(7):e0134851</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26230322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944695</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Pept Res. 1995 Nov-Dec;8(6):345-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8838418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Protein Chem. 2005;70:11-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837512</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Mar 25;280(12):11259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640162</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2005 Feb 15;191(4):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655773</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5757-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9770-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937889</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1996 Sep 1;223(1):103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2004 Oct 8;576(1-2):174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 1995 Jun;22(2):119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7567960</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol Methods. 2002 Sep 1;267(1):13-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1994 Oct;3(10):1629-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7849580</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133726</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 1996;66:149-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8959713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng Des Sel. 2009 Aug;22(8):531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602569</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Pharm Des. 2008;14(24):2428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antivir Ther. 2005;10(5):671-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16152761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Sep;1844(9):1675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24981796</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2004 Sep 15;173(6):4050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Aug;85(15):5409-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3399498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2008 Aug 5;47(31):8214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2012 Aug 24;421(4-5):441-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244855</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):34156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11445568</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2000 Nov 14;39(45):13748-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 May 2;369(2):344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18279660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2005 Apr 15;174(8):4908-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814718</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Sep 20;277(38):35475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12095997</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2015 Mar 10;54(9):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25668103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Oct;77(20):10910-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 Jul 20;416(1-2):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21601229</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Apr 28;281(17):11965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem. 2013 Mar;5(3):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Nov 9;43(44):14064-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15518555</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods. 2004 Sep;34(1):151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283924</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Biochem. 2007 Apr 12;8:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17430579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Sep;76(18):9079-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12186891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000999 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000999 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29800727
   |texte=   Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29800727" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021