Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional and Translational Landscape of Equine Torovirus.

Identifieur interne : 000995 ( PubMed/Corpus ); précédent : 000994; suivant : 000996

Transcriptional and Translational Landscape of Equine Torovirus.

Auteurs : Hazel Stewart ; Katherine Brown ; Adam M. Dinan ; Nerea Irigoyen ; Eric J. Snijder ; Andrew E. Firth

Source :

RBID : pubmed:29950409

English descriptors

Abstract

The genus Torovirus (subfamily Torovirinae, family Coronaviridae, order Nidovirales) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.IMPORTANCE Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.

DOI: 10.1128/JVI.00589-18
PubMed: 29950409

Links to Exploration step

pubmed:29950409

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional and Translational Landscape of Equine Torovirus.</title>
<author>
<name sortKey="Stewart, Hazel" sort="Stewart, Hazel" uniqKey="Stewart H" first="Hazel" last="Stewart">Hazel Stewart</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brown, Katherine" sort="Brown, Katherine" uniqKey="Brown K" first="Katherine" last="Brown">Katherine Brown</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dinan, Adam M" sort="Dinan, Adam M" uniqKey="Dinan A" first="Adam M" last="Dinan">Adam M. Dinan</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Irigoyen, Nerea" sort="Irigoyen, Nerea" uniqKey="Irigoyen N" first="Nerea" last="Irigoyen">Nerea Irigoyen</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Firth, Andrew E" sort="Firth, Andrew E" uniqKey="Firth A" first="Andrew E" last="Firth">Andrew E. Firth</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom aef24@cam.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29950409</idno>
<idno type="pmid">29950409</idno>
<idno type="doi">10.1128/JVI.00589-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000995</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000995</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptional and Translational Landscape of Equine Torovirus.</title>
<author>
<name sortKey="Stewart, Hazel" sort="Stewart, Hazel" uniqKey="Stewart H" first="Hazel" last="Stewart">Hazel Stewart</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brown, Katherine" sort="Brown, Katherine" uniqKey="Brown K" first="Katherine" last="Brown">Katherine Brown</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dinan, Adam M" sort="Dinan, Adam M" uniqKey="Dinan A" first="Adam M" last="Dinan">Adam M. Dinan</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Irigoyen, Nerea" sort="Irigoyen, Nerea" uniqKey="Irigoyen N" first="Nerea" last="Irigoyen">Nerea Irigoyen</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Firth, Andrew E" sort="Firth, Andrew E" uniqKey="Firth A" first="Andrew E" last="Firth">Andrew E. Firth</name>
<affiliation>
<nlm:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom aef24@cam.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Gene Expression Profiling</term>
<term>Horses</term>
<term>Host-Pathogen Interactions</term>
<term>Protein Biosynthesis</term>
<term>Sequence Analysis, RNA</term>
<term>Torovirus (genetics)</term>
<term>Torovirus (growth & development)</term>
<term>Transcription, Genetic</term>
<term>Viral Proteins (biosynthesis)</term>
<term>Viral Proteins (genetics)</term>
<term>Virus Cultivation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Torovirus</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Torovirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Gene Expression Profiling</term>
<term>Horses</term>
<term>Host-Pathogen Interactions</term>
<term>Protein Biosynthesis</term>
<term>Sequence Analysis, RNA</term>
<term>Transcription, Genetic</term>
<term>Virus Cultivation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The genus
<i>Torovirus</i>
(subfamily
<i>Torovirinae</i>
, family
<i>Coronaviridae</i>
, order
<i>Nidovirales</i>
) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.
<b>IMPORTANCE</b>
Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29950409</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptional and Translational Landscape of Equine Torovirus.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00589-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00589-18</ELocationID>
<Abstract>
<AbstractText>The genus
<i>Torovirus</i>
(subfamily
<i>Torovirinae</i>
, family
<i>Coronaviridae</i>
, order
<i>Nidovirales</i>
) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.
<b>IMPORTANCE</b>
Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.</AbstractText>
<CopyrightInformation>Copyright © 2018 Stewart et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Stewart</LastName>
<ForeName>Hazel</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Brown</LastName>
<ForeName>Katherine</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dinan</LastName>
<ForeName>Adam M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Irigoyen</LastName>
<ForeName>Nerea</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Snijder</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Firth</LastName>
<ForeName>Andrew E</ForeName>
<Initials>AE</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7986-9520</Identifier>
<AffiliationInfo>
<Affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom aef24@cam.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>106207 </GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006736" MajorTopicYN="N">Horses</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="Y">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017003" MajorTopicYN="N">Torovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014776" MajorTopicYN="N">Virus Cultivation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">nidovirus</Keyword>
<Keyword MajorTopicYN="Y">ribosomes</Keyword>
<Keyword MajorTopicYN="Y">transcription</Keyword>
<Keyword MajorTopicYN="Y">veterinary pathogens</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29950409</ArticleId>
<ArticleId IdType="pii">JVI.00589-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00589-18</ArticleId>
<ArticleId IdType="pmc">PMC6096809</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1403-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9489-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1329098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Feb 16;7:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16483358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1987 Apr;25(4):637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3571473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2013 Apr 26;2013:bat031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23624946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Apr;16(4):404-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2015 Jun;10(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):980-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anim Health Res Rev. 2004 Dec;5(2):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15984322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6346-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Dec;80(23):11598-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e20972</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2010 Dec 15;146(3-4):260-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Apr 04;7:11194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27041671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Feb;71(2):996-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8995618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Sep;77(17):9567-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2010 Sep 18;7:242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20849641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):12939-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Aug 11;18(15):4535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2388833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Nov 10;42(20):12425-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25326325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Sep;66(9):5277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1501275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(7):4357-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D84-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1986 Jan 31;44(2):283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3943125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2012 Aug;157(8):1623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2017 Jul 06;9(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28684708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jul;79(13):8275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Jan;180(1):448-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1984666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Feb 26;12(2):e1005473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26919232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2018 Jan 22;15(1):10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29357872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Apr;517:38-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29475599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 May 01;10(5):e1004077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24788150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2012 Jul;93(Pt 7):1385-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1983 Sep;64 (Pt 9):1849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6886677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Apr;83(Pt 4):927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005 Jun 28;6:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15985156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(17):e134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26615191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012 Dec 05;5:675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23217216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8895-E8904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29073030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Mar;4(3):363-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2016 Mar;38:90-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26708248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(20):10719-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19640978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2009 Sep 08;6:136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1991 Jul;72 ( Pt 7):1635-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1856694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jun 15;24(12):1461-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18441000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1974-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Oct 30;14:743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24168272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(8):1184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19617889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2003 May-Jun;95(3-4):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10518575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2014 Dec 18;2(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25523767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2015 Nov;2(1):265-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26958916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D184-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Aug 3;206:120-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25736566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Nov 11;9:474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 2;21(23):6571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Sep;9(9):2218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17490409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Jan;115(1):56-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16137782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2007 Aug;14(8):998-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2014 Apr;159(4):773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24122107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22121212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jun 2;12(6):e0178408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28575086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 25;45(2):513-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27923997</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000995 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000995 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29950409
   |texte=   Transcriptional and Translational Landscape of Equine Torovirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29950409" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021