Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus.

Identifieur interne : 000983 ( PubMed/Corpus ); précédent : 000982; suivant : 000984

Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus.

Auteurs : Lianqi Zhang ; Lei Li ; Liming Yan ; Zhenhua Ming ; Zhihui Jia ; Zhiyong Lou ; Zihe Rao

Source :

RBID : pubmed:30135128

English descriptors

Abstract

Nonstructural protein 15 (Nsp15) encoded by coronavirus (CoV) is a nidoviral uridylate-specific endoribonuclease (NendoU) that plays an essential role in the life cycle of the virus. Structural information on this crucial protein from the Middle East respiratory syndrome CoV (MERS-CoV), which is lethally pathogenic and has caused severe respiratory diseases worldwide, is lacking. Here, we determined the crystal structure of MERS-CoV Nsp15 at a 2.7-Å resolution and performed the relevant biochemical assays to study how NendoU activity is regulated. Although the overall structure is conserved, MERS-CoV Nsp15 shows unique and novel features compared to its homologs. Serine substitution of residue F285, which harbors an aromatic side chain that disturbs RNA binding compared with that of other homologs, increases catalytic activity. Mutations of residues residing on the oligomerization interfaces that distort hexamerization, namely, N38A, Y58A, and N157A, decrease thermostability, decrease affinity of binding with RNA, and reduce the NendoU activity of Nsp15. In contrast, mutant D39A exhibits increased activity and a higher substrate binding capacity. Importantly, Nsp8 was found to interact with both monomeric and hexameric Nsp15. The Nsp7/Nsp8 complex displays a higher binding affinity for Nsp15. Furthermore, Nsp8 and the Nsp7/Nsp8 complex also enhance the NendoU activity of hexameric Nsp15 in vitro Taking the findings together, this work first provides evidence on how the activity of Nsp15 may be functionally mediated by catalytic residues, oligomeric assembly, RNA binding efficiency, or the possible association with other nonstructural proteins.IMPORTANCE The lethally pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV) pose serious threats to humans. Endoribonuclease Nsp15 encoded by coronavirus plays an important role in viral infection and pathogenesis. This study determines the structure of MERS-CoV Nsp15 and demonstrates how the catalytic activity of this protein is potentially mediated, thereby providing structural and functional evidence for developing antiviral drugs. We also hypothesize that the primase-like protein Nsp8 and the Nsp7/Nsp8 complex may interact with Nsp15 and affect enzymatic activity. This contributes to the understanding of the association of Nsp15 with the viral replication and transcription machinery.

DOI: 10.1128/JVI.00893-18
PubMed: 30135128

Links to Exploration step

pubmed:30135128

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus.</title>
<author>
<name sortKey="Zhang, Lianqi" sort="Zhang, Lianqi" uniqKey="Zhang L" first="Lianqi" last="Zhang">Lianqi Zhang</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Lei" sort="Li, Lei" uniqKey="Li L" first="Lei" last="Li">Lei Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yan, Liming" sort="Yan, Liming" uniqKey="Yan L" first="Liming" last="Yan">Liming Yan</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ming, Zhenhua" sort="Ming, Zhenhua" uniqKey="Ming Z" first="Zhenhua" last="Ming">Zhenhua Ming</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Zhihui" sort="Jia, Zhihui" uniqKey="Jia Z" first="Zhihui" last="Jia">Zhihui Jia</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lou, Zhiyong" sort="Lou, Zhiyong" uniqKey="Lou Z" first="Zhiyong" last="Lou">Zhiyong Lou</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rao, Zihe" sort="Rao, Zihe" uniqKey="Rao Z" first="Zihe" last="Rao">Zihe Rao</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China raozh@mail.tsinghua.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30135128</idno>
<idno type="pmid">30135128</idno>
<idno type="doi">10.1128/JVI.00893-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000983</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000983</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus.</title>
<author>
<name sortKey="Zhang, Lianqi" sort="Zhang, Lianqi" uniqKey="Zhang L" first="Lianqi" last="Zhang">Lianqi Zhang</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Lei" sort="Li, Lei" uniqKey="Li L" first="Lei" last="Li">Lei Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yan, Liming" sort="Yan, Liming" uniqKey="Yan L" first="Liming" last="Yan">Liming Yan</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ming, Zhenhua" sort="Ming, Zhenhua" uniqKey="Ming Z" first="Zhenhua" last="Ming">Zhenhua Ming</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Zhihui" sort="Jia, Zhihui" uniqKey="Jia Z" first="Zhihui" last="Jia">Zhihui Jia</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lou, Zhiyong" sort="Lou, Zhiyong" uniqKey="Lou Z" first="Zhiyong" last="Lou">Zhiyong Lou</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rao, Zihe" sort="Rao, Zihe" uniqKey="Rao Z" first="Zihe" last="Rao">Zihe Rao</name>
<affiliation>
<nlm:affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China raozh@mail.tsinghua.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Endoribonucleases (chemistry)</term>
<term>Endoribonucleases (genetics)</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Protein Multimerization</term>
<term>RNA Replicase (chemistry)</term>
<term>RNA Replicase (genetics)</term>
<term>RNA-Binding Proteins (chemistry)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>Sequence Alignment</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Endoribonucleases</term>
<term>RNA Replicase</term>
<term>RNA-Binding Proteins</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Endoribonucleases</term>
<term>RNA Replicase</term>
<term>RNA-Binding Proteins</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Protein Multimerization</term>
<term>Sequence Alignment</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nonstructural protein 15 (Nsp15) encoded by coronavirus (CoV) is a nidoviral uridylate-specific endoribonuclease (NendoU) that plays an essential role in the life cycle of the virus. Structural information on this crucial protein from the Middle East respiratory syndrome CoV (MERS-CoV), which is lethally pathogenic and has caused severe respiratory diseases worldwide, is lacking. Here, we determined the crystal structure of MERS-CoV Nsp15 at a 2.7-Å resolution and performed the relevant biochemical assays to study how NendoU activity is regulated. Although the overall structure is conserved, MERS-CoV Nsp15 shows unique and novel features compared to its homologs. Serine substitution of residue F285, which harbors an aromatic side chain that disturbs RNA binding compared with that of other homologs, increases catalytic activity. Mutations of residues residing on the oligomerization interfaces that distort hexamerization, namely, N38A, Y58A, and N157A, decrease thermostability, decrease affinity of binding with RNA, and reduce the NendoU activity of Nsp15. In contrast, mutant D39A exhibits increased activity and a higher substrate binding capacity. Importantly, Nsp8 was found to interact with both monomeric and hexameric Nsp15. The Nsp7/Nsp8 complex displays a higher binding affinity for Nsp15. Furthermore, Nsp8 and the Nsp7/Nsp8 complex also enhance the NendoU activity of hexameric Nsp15
<i>in vitro</i>
Taking the findings together, this work first provides evidence on how the activity of Nsp15 may be functionally mediated by catalytic residues, oligomeric assembly, RNA binding efficiency, or the possible association with other nonstructural proteins.
<b>IMPORTANCE</b>
The lethally pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV) pose serious threats to humans. Endoribonuclease Nsp15 encoded by coronavirus plays an important role in viral infection and pathogenesis. This study determines the structure of MERS-CoV Nsp15 and demonstrates how the catalytic activity of this protein is potentially mediated, thereby providing structural and functional evidence for developing antiviral drugs. We also hypothesize that the primase-like protein Nsp8 and the Nsp7/Nsp8 complex may interact with Nsp15 and affect enzymatic activity. This contributes to the understanding of the association of Nsp15 with the viral replication and transcription machinery.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30135128</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00893-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00893-18</ELocationID>
<Abstract>
<AbstractText>Nonstructural protein 15 (Nsp15) encoded by coronavirus (CoV) is a nidoviral uridylate-specific endoribonuclease (NendoU) that plays an essential role in the life cycle of the virus. Structural information on this crucial protein from the Middle East respiratory syndrome CoV (MERS-CoV), which is lethally pathogenic and has caused severe respiratory diseases worldwide, is lacking. Here, we determined the crystal structure of MERS-CoV Nsp15 at a 2.7-Å resolution and performed the relevant biochemical assays to study how NendoU activity is regulated. Although the overall structure is conserved, MERS-CoV Nsp15 shows unique and novel features compared to its homologs. Serine substitution of residue F285, which harbors an aromatic side chain that disturbs RNA binding compared with that of other homologs, increases catalytic activity. Mutations of residues residing on the oligomerization interfaces that distort hexamerization, namely, N38A, Y58A, and N157A, decrease thermostability, decrease affinity of binding with RNA, and reduce the NendoU activity of Nsp15. In contrast, mutant D39A exhibits increased activity and a higher substrate binding capacity. Importantly, Nsp8 was found to interact with both monomeric and hexameric Nsp15. The Nsp7/Nsp8 complex displays a higher binding affinity for Nsp15. Furthermore, Nsp8 and the Nsp7/Nsp8 complex also enhance the NendoU activity of hexameric Nsp15
<i>in vitro</i>
Taking the findings together, this work first provides evidence on how the activity of Nsp15 may be functionally mediated by catalytic residues, oligomeric assembly, RNA binding efficiency, or the possible association with other nonstructural proteins.
<b>IMPORTANCE</b>
The lethally pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV) pose serious threats to humans. Endoribonuclease Nsp15 encoded by coronavirus plays an important role in viral infection and pathogenesis. This study determines the structure of MERS-CoV Nsp15 and demonstrates how the catalytic activity of this protein is potentially mediated, thereby providing structural and functional evidence for developing antiviral drugs. We also hypothesize that the primase-like protein Nsp8 and the Nsp7/Nsp8 complex may interact with Nsp15 and affect enzymatic activity. This contributes to the understanding of the association of Nsp15 with the viral replication and transcription machinery.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Zhang</LastName>
<ForeName>Lianqi</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Li</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Liming</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ming</LastName>
<ForeName>Zhenhua</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Zhihui</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lou</LastName>
<ForeName>Zhiyong</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rao</LastName>
<ForeName>Zihe</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China raozh@mail.tsinghua.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nankai University, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087633">nonstructural protein, coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004722">Endoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004722" MajorTopicYN="N">Endoribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">MERS-CoV</Keyword>
<Keyword MajorTopicYN="Y">crystal structure</Keyword>
<Keyword MajorTopicYN="Y">endoribonuclease</Keyword>
<Keyword MajorTopicYN="Y">oligomerization</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30135128</ArticleId>
<ArticleId IdType="pii">JVI.00893-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00893-18</ArticleId>
<ArticleId IdType="pmc">PMC6206473</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1403-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1997;142(3):629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Feb;80(4):1653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Apr;86(8):4294-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22301153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2013 Mar;59(3):301-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23270813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Aug 12;90(17):7748-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27334588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25197083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11892-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1955-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Nov;12(11):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Oct 23;553(3):451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14572668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19404494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 Jan 31;8(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28143984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4251-E4260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28484023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(12):6700-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Med. 2017 Jan 14;68:387-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27576010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 8;283(6):3655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1995;380:499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Dec;81(24):13587-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17898055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000983 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000983 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30135128
   |texte=   Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30135128" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021