Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution.

Identifieur interne : 000978 ( PubMed/Corpus ); précédent : 000977; suivant : 000979

Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution.

Auteurs : Lei Yan ; Bing Meng ; Jiangchao Xiang ; Ian A. Wilson ; Bei Yang

Source :

RBID : pubmed:30198895

English descriptors

Abstract

Human coronavirus 229E (HCoV-229E) usually causes mild upper respiratory infections in heathy adults, but may lead to severe complications or mortality in individuals with weakened immune systems. Virus entry of HCoV-229E is mediated by its spike (S) protein, where the S1 domain facilitates attachment to host cells and the S2 domain is involved in subsequent fusion of the virus and host membranes. During the fusion process, two heptad repeats, HR1 and HR2, in the S2 domain assemble into a six-helix membrane-fusion structure termed the fusion core. Here, the complete fusion-core structure of HCoV-229E has been determined at 1.86 Å resolution, representing the most complete post-fusion conformation thus far among published human alphacoronavirus (α-HCoV) fusion-core structures. The overall structure of the HCoV-229E fusion core is similar to those of SARS, MERS and HCoV-NL63, but the packing of its 3HR1 core differs from those of SARS and MERS in that it contains more noncanonical `x' and `da' layers. Side-by-side electrostatic surface comparisons reveal that the electrostatic surface potentials are opposite in α-HCoVs and β-HCoVs at certain positions and that the HCoV-229E surface also appears to be the most hydrophobic among the various HCoVs. In addition to the highly conserved hydrophobic interactions between HR1 and HR2, some polar and electrostatic interactions are also well preserved across different HCoVs. This study adds to the structural profiling of HCoVs to aid in the structure-based design of pan-coronavirus small molecules or peptides to inhibit viral fusion.

DOI: 10.1107/S2059798318008318
PubMed: 30198895

Links to Exploration step

pubmed:30198895

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution.</title>
<author>
<name sortKey="Yan, Lei" sort="Yan, Lei" uniqKey="Yan L" first="Lei" last="Yan">Lei Yan</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meng, Bing" sort="Meng, Bing" uniqKey="Meng B" first="Bing" last="Meng">Bing Meng</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiang, Jiangchao" sort="Xiang, Jiangchao" uniqKey="Xiang J" first="Jiangchao" last="Xiang">Jiangchao Xiang</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian A" sort="Wilson, Ian A" uniqKey="Wilson I" first="Ian A" last="Wilson">Ian A. Wilson</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Bei" sort="Yang, Bei" uniqKey="Yang B" first="Bei" last="Yang">Bei Yang</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30198895</idno>
<idno type="pmid">30198895</idno>
<idno type="doi">10.1107/S2059798318008318</idno>
<idno type="wicri:Area/PubMed/Corpus">000978</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000978</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution.</title>
<author>
<name sortKey="Yan, Lei" sort="Yan, Lei" uniqKey="Yan L" first="Lei" last="Yan">Lei Yan</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meng, Bing" sort="Meng, Bing" uniqKey="Meng B" first="Bing" last="Meng">Bing Meng</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiang, Jiangchao" sort="Xiang, Jiangchao" uniqKey="Xiang J" first="Jiangchao" last="Xiang">Jiangchao Xiang</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian A" sort="Wilson, Ian A" uniqKey="Wilson I" first="Ian A" last="Wilson">Ian A. Wilson</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Bei" sort="Yang, Bei" uniqKey="Yang B" first="Bei" last="Yang">Bei Yang</name>
<affiliation>
<nlm:affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta crystallographica. Section D, Structural biology</title>
<idno type="eISSN">2059-7983</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Coronavirus 229E, Human (isolation & purification)</term>
<term>Coronavirus 229E, Human (physiology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Sequence Alignment</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Recombinant Fusion Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Coronavirus 229E, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus 229E, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Sequence Alignment</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human coronavirus 229E (HCoV-229E) usually causes mild upper respiratory infections in heathy adults, but may lead to severe complications or mortality in individuals with weakened immune systems. Virus entry of HCoV-229E is mediated by its spike (S) protein, where the S1 domain facilitates attachment to host cells and the S2 domain is involved in subsequent fusion of the virus and host membranes. During the fusion process, two heptad repeats, HR1 and HR2, in the S2 domain assemble into a six-helix membrane-fusion structure termed the fusion core. Here, the complete fusion-core structure of HCoV-229E has been determined at 1.86 Å resolution, representing the most complete post-fusion conformation thus far among published human alphacoronavirus (α-HCoV) fusion-core structures. The overall structure of the HCoV-229E fusion core is similar to those of SARS, MERS and HCoV-NL63, but the packing of its 3HR1 core differs from those of SARS and MERS in that it contains more noncanonical `x' and `da' layers. Side-by-side electrostatic surface comparisons reveal that the electrostatic surface potentials are opposite in α-HCoVs and β-HCoVs at certain positions and that the HCoV-229E surface also appears to be the most hydrophobic among the various HCoVs. In addition to the highly conserved hydrophobic interactions between HR1 and HR2, some polar and electrostatic interactions are also well preserved across different HCoVs. This study adds to the structural profiling of HCoVs to aid in the structure-based design of pan-coronavirus small molecules or peptides to inhibit viral fusion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30198895</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2059-7983</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>74</Volume>
<Issue>Pt 9</Issue>
<PubDate>
<Year>2018</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Acta crystallographica. Section D, Structural biology</Title>
<ISOAbbreviation>Acta Crystallogr D Struct Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution.</ArticleTitle>
<Pagination>
<MedlinePgn>841-851</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S2059798318008318</ELocationID>
<Abstract>
<AbstractText>Human coronavirus 229E (HCoV-229E) usually causes mild upper respiratory infections in heathy adults, but may lead to severe complications or mortality in individuals with weakened immune systems. Virus entry of HCoV-229E is mediated by its spike (S) protein, where the S1 domain facilitates attachment to host cells and the S2 domain is involved in subsequent fusion of the virus and host membranes. During the fusion process, two heptad repeats, HR1 and HR2, in the S2 domain assemble into a six-helix membrane-fusion structure termed the fusion core. Here, the complete fusion-core structure of HCoV-229E has been determined at 1.86 Å resolution, representing the most complete post-fusion conformation thus far among published human alphacoronavirus (α-HCoV) fusion-core structures. The overall structure of the HCoV-229E fusion core is similar to those of SARS, MERS and HCoV-NL63, but the packing of its 3HR1 core differs from those of SARS and MERS in that it contains more noncanonical `x' and `da' layers. Side-by-side electrostatic surface comparisons reveal that the electrostatic surface potentials are opposite in α-HCoVs and β-HCoVs at certain positions and that the HCoV-229E surface also appears to be the most hydrophobic among the various HCoVs. In addition to the highly conserved hydrophobic interactions between HR1 and HR2, some polar and electrostatic interactions are also well preserved across different HCoVs. This study adds to the structural profiling of HCoVs to aid in the structure-based design of pan-coronavirus small molecules or peptides to inhibit viral fusion.</AbstractText>
<CopyrightInformation>open access.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Bing</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiang</LastName>
<ForeName>Jiangchao</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>Ian A</ForeName>
<Initials>IA</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Bei</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0001-5389-3859</Identifier>
<AffiliationInfo>
<Affiliation>Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>UM1 AI100663</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>31600619</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>16PJ1407500</GrantID>
<Agency>Science and Technology Commission of Shanghai Municipality</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Crystallogr D Struct Biol</MedlineTA>
<NlmUniqueID>101676043</NlmUniqueID>
<ISSNLinking>2059-7983</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028941" MajorTopicYN="N">Coronavirus 229E, Human</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">HCoV-229E</Keyword>
<Keyword MajorTopicYN="N">MERS</Keyword>
<Keyword MajorTopicYN="N">SARS</Keyword>
<Keyword MajorTopicYN="N">X-ray structure</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">post-fusion core</Keyword>
<Keyword MajorTopicYN="N">spike protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30198895</ArticleId>
<ArticleId IdType="pii">S2059798318008318</ArticleId>
<ArticleId IdType="doi">10.1107/S2059798318008318</ArticleId>
<ArticleId IdType="pmc">PMC6130466</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2014 May;23(5):603-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24519901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1993 Mar;15(3):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8456094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comb Chem. 2005 Sep-Oct;7(5):648-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):237-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27578435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2017 Jan;25(1):35-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27743750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Mar 4;497(2):705-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29458023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:211-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16712436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 26;45(51):15205-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jun 20;350(1):15-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 23;8(1):1735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29170370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2007;12(4 Pt B):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24473083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 May 10;335(2):276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2017 Jan;27(1):119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W665-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2015 Jun 17;4:e37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26954884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Oct;23(10):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2016;96:29-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27712627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Dec 13;55(49):6787-6800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27766858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Soc Exp Biol Med. 1966 Jan;121(1):190-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4285768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Dec 15;212(12):1894-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26164863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Dec 20;342(6165):1477-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2013 Apr;3(2):143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23562213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):420-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2009 Oct;234(10):1117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2002 Jan-Feb;137(1-2):54-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12064933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(24):13134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24067982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Respir Crit Care Med. 2009 Feb;30(1):67-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19199189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Respir Crit Care Med. 2016 Aug;37(4):555-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27486736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Dec 20;342(6165):1484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Respir Med J. 2011;5:61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21760867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W116-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1981 Jan 29;289(5796):366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7464906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):11819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414924</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000978 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000978 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30198895
   |texte=   Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30198895" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021