Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis.

Identifieur interne : 000962 ( PubMed/Corpus ); précédent : 000961; suivant : 000963

Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis.

Auteurs : Robert N. Kirchdoerfer ; Nianshuang Wang ; Jesper Pallesen ; Daniel Wrapp ; Hannah L. Turner ; Christopher A. Cottrell ; Kizzmekia S. Corbett ; Barney S. Graham ; Jason S. Mclellan ; Andrew B. Ward

Source :

RBID : pubmed:30356097

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2'.

DOI: 10.1038/s41598-018-34171-7
PubMed: 30356097

Links to Exploration step

pubmed:30356097

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis.</title>
<author>
<name sortKey="Kirchdoerfer, Robert N" sort="Kirchdoerfer, Robert N" uniqKey="Kirchdoerfer R" first="Robert N" last="Kirchdoerfer">Robert N. Kirchdoerfer</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Nianshuang" sort="Wang, Nianshuang" uniqKey="Wang N" first="Nianshuang" last="Wang">Nianshuang Wang</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pallesen, Jesper" sort="Pallesen, Jesper" uniqKey="Pallesen J" first="Jesper" last="Pallesen">Jesper Pallesen</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wrapp, Daniel" sort="Wrapp, Daniel" uniqKey="Wrapp D" first="Daniel" last="Wrapp">Daniel Wrapp</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turner, Hannah L" sort="Turner, Hannah L" uniqKey="Turner H" first="Hannah L" last="Turner">Hannah L. Turner</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cottrell, Christopher A" sort="Cottrell, Christopher A" uniqKey="Cottrell C" first="Christopher A" last="Cottrell">Christopher A. Cottrell</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corbett, Kizzmekia S" sort="Corbett, Kizzmekia S" uniqKey="Corbett K" first="Kizzmekia S" last="Corbett">Kizzmekia S. Corbett</name>
<affiliation>
<nlm:affiliation>Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20814, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Graham, Barney S" sort="Graham, Barney S" uniqKey="Graham B" first="Barney S" last="Graham">Barney S. Graham</name>
<affiliation>
<nlm:affiliation>Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20814, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mclellan, Jason S" sort="Mclellan, Jason S" uniqKey="Mclellan J" first="Jason S" last="Mclellan">Jason S. Mclellan</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ward, Andrew B" sort="Ward, Andrew B" uniqKey="Ward A" first="Andrew B" last="Ward">Andrew B. Ward</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. andrew@scripps.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30356097</idno>
<idno type="pmid">30356097</idno>
<idno type="doi">10.1038/s41598-018-34171-7</idno>
<idno type="wicri:Area/PubMed/Corpus">000962</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000962</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis.</title>
<author>
<name sortKey="Kirchdoerfer, Robert N" sort="Kirchdoerfer, Robert N" uniqKey="Kirchdoerfer R" first="Robert N" last="Kirchdoerfer">Robert N. Kirchdoerfer</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Nianshuang" sort="Wang, Nianshuang" uniqKey="Wang N" first="Nianshuang" last="Wang">Nianshuang Wang</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pallesen, Jesper" sort="Pallesen, Jesper" uniqKey="Pallesen J" first="Jesper" last="Pallesen">Jesper Pallesen</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wrapp, Daniel" sort="Wrapp, Daniel" uniqKey="Wrapp D" first="Daniel" last="Wrapp">Daniel Wrapp</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turner, Hannah L" sort="Turner, Hannah L" uniqKey="Turner H" first="Hannah L" last="Turner">Hannah L. Turner</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cottrell, Christopher A" sort="Cottrell, Christopher A" uniqKey="Cottrell C" first="Christopher A" last="Cottrell">Christopher A. Cottrell</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corbett, Kizzmekia S" sort="Corbett, Kizzmekia S" uniqKey="Corbett K" first="Kizzmekia S" last="Corbett">Kizzmekia S. Corbett</name>
<affiliation>
<nlm:affiliation>Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20814, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Graham, Barney S" sort="Graham, Barney S" uniqKey="Graham B" first="Barney S" last="Graham">Barney S. Graham</name>
<affiliation>
<nlm:affiliation>Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20814, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mclellan, Jason S" sort="Mclellan, Jason S" uniqKey="Mclellan J" first="Jason S" last="Mclellan">Jason S. Mclellan</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ward, Andrew B" sort="Ward, Andrew B" uniqKey="Ward A" first="Andrew B" last="Ward">Andrew B. Ward</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. andrew@scripps.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Cryoelectron Microscopy</term>
<term>Glycosylation</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mutation</term>
<term>Peptide Hydrolases (chemistry)</term>
<term>Peptidyl-Dipeptidase A (chemistry)</term>
<term>Proline (genetics)</term>
<term>Protein Stability</term>
<term>Protein Structure, Secondary</term>
<term>Proteolysis</term>
<term>Receptors, Virus (chemistry)</term>
<term>SARS Virus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Trypsin (chemistry)</term>
<term>Viral Tropism</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptide Hydrolases</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Trypsin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Proline</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Cryoelectron Microscopy</term>
<term>Glycosylation</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mutation</term>
<term>Protein Stability</term>
<term>Protein Structure, Secondary</term>
<term>Proteolysis</term>
<term>Viral Tropism</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30356097</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis.</ArticleTitle>
<Pagination>
<MedlinePgn>15701</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-34171-7</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2'.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kirchdoerfer</LastName>
<ForeName>Robert N</ForeName>
<Initials>RN</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Nianshuang</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pallesen</LastName>
<ForeName>Jesper</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3270-1587</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wrapp</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turner</LastName>
<ForeName>Hannah L</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cottrell</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3364-3083</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Corbett</LastName>
<ForeName>Kizzmekia S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20814, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Barney S</ForeName>
<Initials>BS</Initials>
<AffiliationInfo>
<Affiliation>Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20814, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McLellan</LastName>
<ForeName>Jason S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ward</LastName>
<ForeName>Andrew B</ForeName>
<Initials>AB</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. andrew@scripps.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K99 AI123498</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00 AI123498</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI127521</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 OD021634</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.4</RegistryNumber>
<NameOfSubstance UI="D014357">Trypsin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Sci Rep. 2018 Dec 10;8(1):17823</RefSource>
<PMID Version="1">30531867</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020285" MajorTopicYN="N">Cryoelectron Microscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="Y">Protein Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="Y">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="Y">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014357" MajorTopicYN="N">Trypsin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056189" MajorTopicYN="N">Viral Tropism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30356097</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-34171-7</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-34171-7</ArticleId>
<ArticleId IdType="pmc">PMC6200764</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Sep;9(9):e1003618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24068931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jul 20;547(7663):360-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28700571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):361-365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25707030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Mar 28;34(12):3873-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7696249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Dec 1;33(23):3824-3826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28961740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Apr;84(7):3134-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2011 Oct;156(10):1749-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21667287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Sep;87(17):9865-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Apr;14(4):331-332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28250466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Nov 15;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27845625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2017 Jan;27(1):119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7348-E7357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28807998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2010 Dec;136(6):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Oct;23(10):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2016 Jan;193(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jan 14;164(1-2):258-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26771495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Apr;517:3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29275820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2005 Jul;151(1):41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Nov;83(21):11133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2014 Dec 12;48:3.13.1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25501942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Sep 1;371(6492):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8072525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 4;455(7209):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18668044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2009 May;166(2):205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19374019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2017 Dec 8;429(24):3875-3892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29056462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 Aug;86(Pt 8):2269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11157-11162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29073020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Sep;76(17):8875-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2004 Jun;1(3):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2009 Apr;166(1):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19263523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jun 2;165(6):1467-1478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27238017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(1):216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Nov 1;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000962 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000962 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30356097
   |texte=   Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30356097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021