Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA stretching induces Cas9 off-target activity.

Identifieur interne : 000928 ( PubMed/Corpus ); précédent : 000927; suivant : 000929

DNA stretching induces Cas9 off-target activity.

Auteurs : Matthew D. Newton ; Benjamin J. Taylor ; Rosalie P C. Driessen ; Leonie Roos ; Nevena Cvetesic ; Shenaz Allyjaun ; Boris Lenhard ; Maria Emanuela Cuomo ; David S. Rueda

Source :

RBID : pubmed:30804513

English descriptors

Abstract

CRISPR/Cas9 is a powerful genome-editing tool, but spurious off-target edits present a barrier to therapeutic applications. To understand how CRISPR/Cas9 discriminates between on-targets and off-targets, we have developed a single-molecule assay combining optical tweezers with fluorescence to monitor binding to λ-DNA. At low forces, the Streptococcus pyogenes Cas9 complex binds and cleaves DNA specifically. At higher forces, numerous off-target binding events appear repeatedly at the same off-target sites in a guide-RNA-sequence-dependent manner, driven by the mechanical distortion of the DNA. Using single-molecule Förster resonance energy transfer (smFRET) and cleavage assays, we show that DNA bubbles induce off-target binding and cleavage at these sites, even with ten mismatches, as well as at previously identified in vivo off-targets. We propose that duplex DNA destabilization during cellular processes (for example, transcription, replication, etc.) can expose these cryptic off-target sites to Cas9 activity, highlighting the need for improved off-target prediction algorithms.

DOI: 10.1038/s41594-019-0188-z
PubMed: 30804513

Links to Exploration step

pubmed:30804513

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA stretching induces Cas9 off-target activity.</title>
<author>
<name sortKey="Newton, Matthew D" sort="Newton, Matthew D" uniqKey="Newton M" first="Matthew D" last="Newton">Matthew D. Newton</name>
<affiliation>
<nlm:affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Benjamin J" sort="Taylor, Benjamin J" uniqKey="Taylor B" first="Benjamin J" last="Taylor">Benjamin J. Taylor</name>
<affiliation>
<nlm:affiliation>Discovery Sciences, IMED Biotech Unit, Astra Zeneca, Cambridge, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Driessen, Rosalie P C" sort="Driessen, Rosalie P C" uniqKey="Driessen R" first="Rosalie P C" last="Driessen">Rosalie P C. Driessen</name>
<affiliation>
<nlm:affiliation>LUMICKS BV, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roos, Leonie" sort="Roos, Leonie" uniqKey="Roos L" first="Leonie" last="Roos">Leonie Roos</name>
<affiliation>
<nlm:affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cvetesic, Nevena" sort="Cvetesic, Nevena" uniqKey="Cvetesic N" first="Nevena" last="Cvetesic">Nevena Cvetesic</name>
<affiliation>
<nlm:affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allyjaun, Shenaz" sort="Allyjaun, Shenaz" uniqKey="Allyjaun S" first="Shenaz" last="Allyjaun">Shenaz Allyjaun</name>
<affiliation>
<nlm:affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lenhard, Boris" sort="Lenhard, Boris" uniqKey="Lenhard B" first="Boris" last="Lenhard">Boris Lenhard</name>
<affiliation>
<nlm:affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cuomo, Maria Emanuela" sort="Cuomo, Maria Emanuela" uniqKey="Cuomo M" first="Maria Emanuela" last="Cuomo">Maria Emanuela Cuomo</name>
<affiliation>
<nlm:affiliation>Discovery Sciences, IMED Biotech Unit, Astra Zeneca, Cambridge, UK. emanuela.cuomo@astrazeneca.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rueda, David S" sort="Rueda, David S" uniqKey="Rueda D" first="David S" last="Rueda">David S. Rueda</name>
<affiliation>
<nlm:affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK. david.rueda@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30804513</idno>
<idno type="pmid">30804513</idno>
<idno type="doi">10.1038/s41594-019-0188-z</idno>
<idno type="wicri:Area/PubMed/Corpus">000928</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000928</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">DNA stretching induces Cas9 off-target activity.</title>
<author>
<name sortKey="Newton, Matthew D" sort="Newton, Matthew D" uniqKey="Newton M" first="Matthew D" last="Newton">Matthew D. Newton</name>
<affiliation>
<nlm:affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Benjamin J" sort="Taylor, Benjamin J" uniqKey="Taylor B" first="Benjamin J" last="Taylor">Benjamin J. Taylor</name>
<affiliation>
<nlm:affiliation>Discovery Sciences, IMED Biotech Unit, Astra Zeneca, Cambridge, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Driessen, Rosalie P C" sort="Driessen, Rosalie P C" uniqKey="Driessen R" first="Rosalie P C" last="Driessen">Rosalie P C. Driessen</name>
<affiliation>
<nlm:affiliation>LUMICKS BV, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roos, Leonie" sort="Roos, Leonie" uniqKey="Roos L" first="Leonie" last="Roos">Leonie Roos</name>
<affiliation>
<nlm:affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cvetesic, Nevena" sort="Cvetesic, Nevena" uniqKey="Cvetesic N" first="Nevena" last="Cvetesic">Nevena Cvetesic</name>
<affiliation>
<nlm:affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allyjaun, Shenaz" sort="Allyjaun, Shenaz" uniqKey="Allyjaun S" first="Shenaz" last="Allyjaun">Shenaz Allyjaun</name>
<affiliation>
<nlm:affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lenhard, Boris" sort="Lenhard, Boris" uniqKey="Lenhard B" first="Boris" last="Lenhard">Boris Lenhard</name>
<affiliation>
<nlm:affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cuomo, Maria Emanuela" sort="Cuomo, Maria Emanuela" uniqKey="Cuomo M" first="Maria Emanuela" last="Cuomo">Maria Emanuela Cuomo</name>
<affiliation>
<nlm:affiliation>Discovery Sciences, IMED Biotech Unit, Astra Zeneca, Cambridge, UK. emanuela.cuomo@astrazeneca.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rueda, David S" sort="Rueda, David S" uniqKey="Rueda D" first="David S" last="Rueda">David S. Rueda</name>
<affiliation>
<nlm:affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK. david.rueda@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature structural & molecular biology</title>
<idno type="eISSN">1545-9985</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteriophage lambda (genetics)</term>
<term>CRISPR-Associated Protein 9 (metabolism)</term>
<term>CRISPR-Cas Systems (genetics)</term>
<term>Clustered Regularly Interspaced Short Palindromic Repeats (genetics)</term>
<term>DNA Cleavage</term>
<term>DNA, Viral (genetics)</term>
<term>DNA, Viral (metabolism)</term>
<term>Escherichia coli (virology)</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Gene Editing</term>
<term>Microfluidics</term>
<term>Microscopy, Confocal</term>
<term>Optical Tweezers</term>
<term>RNA, Guide (genetics)</term>
<term>Streptococcus pyogenes (enzymology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Viral</term>
<term>RNA, Guide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>CRISPR-Associated Protein 9</term>
<term>DNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Streptococcus pyogenes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteriophage lambda</term>
<term>CRISPR-Cas Systems</term>
<term>Clustered Regularly Interspaced Short Palindromic Repeats</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Cleavage</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Gene Editing</term>
<term>Microfluidics</term>
<term>Microscopy, Confocal</term>
<term>Optical Tweezers</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">CRISPR/Cas9 is a powerful genome-editing tool, but spurious off-target edits present a barrier to therapeutic applications. To understand how CRISPR/Cas9 discriminates between on-targets and off-targets, we have developed a single-molecule assay combining optical tweezers with fluorescence to monitor binding to λ-DNA. At low forces, the Streptococcus pyogenes Cas9 complex binds and cleaves DNA specifically. At higher forces, numerous off-target binding events appear repeatedly at the same off-target sites in a guide-RNA-sequence-dependent manner, driven by the mechanical distortion of the DNA. Using single-molecule Förster resonance energy transfer (smFRET) and cleavage assays, we show that DNA bubbles induce off-target binding and cleavage at these sites, even with ten mismatches, as well as at previously identified in vivo off-targets. We propose that duplex DNA destabilization during cellular processes (for example, transcription, replication, etc.) can expose these cryptic off-target sites to Cas9 activity, highlighting the need for improved off-target prediction algorithms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30804513</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>11</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1545-9985</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Nature structural & molecular biology</Title>
<ISOAbbreviation>Nat. Struct. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>DNA stretching induces Cas9 off-target activity.</ArticleTitle>
<Pagination>
<MedlinePgn>185-192</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41594-019-0188-z</ELocationID>
<Abstract>
<AbstractText>CRISPR/Cas9 is a powerful genome-editing tool, but spurious off-target edits present a barrier to therapeutic applications. To understand how CRISPR/Cas9 discriminates between on-targets and off-targets, we have developed a single-molecule assay combining optical tweezers with fluorescence to monitor binding to λ-DNA. At low forces, the Streptococcus pyogenes Cas9 complex binds and cleaves DNA specifically. At higher forces, numerous off-target binding events appear repeatedly at the same off-target sites in a guide-RNA-sequence-dependent manner, driven by the mechanical distortion of the DNA. Using single-molecule Förster resonance energy transfer (smFRET) and cleavage assays, we show that DNA bubbles induce off-target binding and cleavage at these sites, even with ten mismatches, as well as at previously identified in vivo off-targets. We propose that duplex DNA destabilization during cellular processes (for example, transcription, replication, etc.) can expose these cryptic off-target sites to Cas9 activity, highlighting the need for improved off-target prediction algorithms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Newton</LastName>
<ForeName>Matthew D</ForeName>
<Initials>MD</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9453-6791</Identifier>
<AffiliationInfo>
<Affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Benjamin J</ForeName>
<Initials>BJ</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6101-3786</Identifier>
<AffiliationInfo>
<Affiliation>Discovery Sciences, IMED Biotech Unit, Astra Zeneca, Cambridge, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Driessen</LastName>
<ForeName>Rosalie P C</ForeName>
<Initials>RPC</Initials>
<AffiliationInfo>
<Affiliation>LUMICKS BV, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roos</LastName>
<ForeName>Leonie</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cvetesic</LastName>
<ForeName>Nevena</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Allyjaun</LastName>
<ForeName>Shenaz</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lenhard</LastName>
<ForeName>Boris</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1114-1509</Identifier>
<AffiliationInfo>
<Affiliation>Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cuomo</LastName>
<ForeName>Maria Emanuela</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Discovery Sciences, IMED Biotech Unit, Astra Zeneca, Cambridge, UK. emanuela.cuomo@astrazeneca.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rueda</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4657-6323</Identifier>
<AffiliationInfo>
<Affiliation>Molecular Virology, Department of Medicine, Imperial College London, London, UK. david.rueda@imperial.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK. david.rueda@imperial.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MC_UP_1102/1</GrantID>
<Acronym>MRC_</Acronym>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>MC_UP_1102/5</GrantID>
<Acronym>MRC_</Acronym>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>106954</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>206292/Z/17/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Struct Mol Biol</MedlineTA>
<NlmUniqueID>101186374</NlmUniqueID>
<ISSNLinking>1545-9985</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017394">RNA, Guide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D000076987">CRISPR-Associated Protein 9</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D010582" MajorTopicYN="N">Bacteriophage lambda</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076987" MajorTopicYN="N">CRISPR-Associated Protein 9</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064113" MajorTopicYN="N">CRISPR-Cas Systems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064112" MajorTopicYN="N">Clustered Regularly Interspaced Short Palindromic Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053837" MajorTopicYN="N">DNA Cleavage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031541" MajorTopicYN="N">Fluorescence Resonance Energy Transfer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072669" MajorTopicYN="N">Gene Editing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044085" MajorTopicYN="N">Microfluidics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052898" MajorTopicYN="N">Optical Tweezers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017394" MajorTopicYN="N">RNA, Guide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013297" MajorTopicYN="N">Streptococcus pyogenes</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30804513</ArticleId>
<ArticleId IdType="doi">10.1038/s41594-019-0188-z</ArticleId>
<ArticleId IdType="pii">10.1038/s41594-019-0188-z</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000928 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000928 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30804513
   |texte=   DNA stretching induces Cas9 off-target activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30804513" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021