Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Potential interventions for novel coronavirus in China: A systematic review.

Identifieur interne : 000802 ( PubMed/Corpus ); précédent : 000801; suivant : 000803

Potential interventions for novel coronavirus in China: A systematic review.

Auteurs : Lei Zhang ; Yunhui Liu

Source :

RBID : pubmed:32052466

English descriptors

Abstract

An outbreak of a novel coronavirus (COVID-19 or 2019-CoV) infection has posed significant threats to international health and the economy. In the absence of treatment for this virus, there is an urgent need to find alternative methods to control the spread of disease. Here, we have conducted an online search for all treatment options related to coronavirus infections as well as some RNA-virus infection and we have found that general treatments, coronavirus-specific treatments, and antiviral treatments should be useful in fighting COVID-19. We suggest that the nutritional status of each infected patient should be evaluated before the administration of general treatments and the current children's RNA-virus vaccines including influenza vaccine should be immunized for uninfected people and health care workers. In addition, convalescent plasma should be given to COVID-19 patients if it is available. In conclusion, we suggest that all the potential interventions be implemented to control the emerging COVID-19 if the infection is uncontrollable.

DOI: 10.1002/jmv.25707
PubMed: 32052466

Links to Exploration step

pubmed:32052466

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Potential interventions for novel coronavirus in China: A systematic review.</title>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yunhui" sort="Liu, Yunhui" uniqKey="Liu Y" first="Yunhui" last="Liu">Yunhui Liu</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32052466</idno>
<idno type="pmid">32052466</idno>
<idno type="doi">10.1002/jmv.25707</idno>
<idno type="wicri:Area/PubMed/Corpus">000802</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000802</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Potential interventions for novel coronavirus in China: A systematic review.</title>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yunhui" sort="Liu, Yunhui" uniqKey="Liu Y" first="Yunhui" last="Liu">Yunhui Liu</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of medical virology</title>
<idno type="eISSN">1096-9071</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (therapeutic use)</term>
<term>Betacoronavirus (immunology)</term>
<term>Betacoronavirus (pathogenicity)</term>
<term>China</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (therapy)</term>
<term>Humans</term>
<term>Immunization, Passive</term>
<term>Immunologic Factors (therapeutic use)</term>
<term>Nutritional Status</term>
<term>Plasma</term>
<term>Pneumonia, Viral (therapy)</term>
<term>Trace Elements (therapeutic use)</term>
<term>Viral Vaccines (administration & dosage)</term>
<term>Vitamins (therapeutic use)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Immunologic Factors</term>
<term>Trace Elements</term>
<term>Vitamins</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Immunization, Passive</term>
<term>Nutritional Status</term>
<term>Plasma</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An outbreak of a novel coronavirus (COVID-19 or 2019-CoV) infection has posed significant threats to international health and the economy. In the absence of treatment for this virus, there is an urgent need to find alternative methods to control the spread of disease. Here, we have conducted an online search for all treatment options related to coronavirus infections as well as some RNA-virus infection and we have found that general treatments, coronavirus-specific treatments, and antiviral treatments should be useful in fighting COVID-19. We suggest that the nutritional status of each infected patient should be evaluated before the administration of general treatments and the current children's RNA-virus vaccines including influenza vaccine should be immunized for uninfected people and health care workers. In addition, convalescent plasma should be given to COVID-19 patients if it is available. In conclusion, we suggest that all the potential interventions be implemented to control the emerging COVID-19 if the infection is uncontrollable.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32052466</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Journal of medical virology</Title>
<ISOAbbreviation>J. Med. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Potential interventions for novel coronavirus in China: A systematic review.</ArticleTitle>
<Pagination>
<MedlinePgn>479-490</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmv.25707</ELocationID>
<Abstract>
<AbstractText>An outbreak of a novel coronavirus (COVID-19 or 2019-CoV) infection has posed significant threats to international health and the economy. In the absence of treatment for this virus, there is an urgent need to find alternative methods to control the spread of disease. Here, we have conducted an online search for all treatment options related to coronavirus infections as well as some RNA-virus infection and we have found that general treatments, coronavirus-specific treatments, and antiviral treatments should be useful in fighting COVID-19. We suggest that the nutritional status of each infected patient should be evaluated before the administration of general treatments and the current children's RNA-virus vaccines including influenza vaccine should be immunized for uninfected people and health care workers. In addition, convalescent plasma should be given to COVID-19 patients if it is available. In conclusion, we suggest that all the potential interventions be implemented to control the emerging COVID-19 if the infection is uncontrollable.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yunhui</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-9920-9933</Identifier>
<AffiliationInfo>
<Affiliation>Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>112-2400017005</GrantID>
<Agency>Project of Key Laboratory of Neurooncology in Liaoning Province, China</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D000078182">Systematic Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Med Virol</MedlineTA>
<NlmUniqueID>7705876</NlmUniqueID>
<ISSNLinking>0146-6615</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000669933">COVID-19 vaccine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007155">Immunologic Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014131">Trace Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014815">Vitamins</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
<SupplMeshName Type="Protocol" UI="C000705128">COVID-19 serotherapy</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007116" MajorTopicYN="Y">Immunization, Passive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007155" MajorTopicYN="N">Immunologic Factors</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009752" MajorTopicYN="Y">Nutritional Status</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010949" MajorTopicYN="N">Plasma</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014131" MajorTopicYN="N">Trace Elements</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014815" MajorTopicYN="N">Vitamins</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">2019-CoV</Keyword>
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">MERS</Keyword>
<Keyword MajorTopicYN="Y">SARS</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">potential interventions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32052466</ArticleId>
<ArticleId IdType="doi">10.1002/jmv.25707</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019;11:41. https://doi.org/10.3390/v11010041</Citation>
</Reference>
<Reference>
<Citation>Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16:69. https://doi.org/10.1186/s12985-019-1182-0</Citation>
</Reference>
<Reference>
<Citation>Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015;386:995-1007. https://doi.org/10.1016/S0140-6736(15)60454-8</Citation>
</Reference>
<Reference>
<Citation>Cohen J, Normile D. New SARS-like virus in China triggers alarm. Science. 2020;367:234-235. https://doi.org/10.1126/science.367.6475.234</Citation>
</Reference>
<Reference>
<Citation>Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. https://doi.org/10.1056/NEJMoa2001017</Citation>
</Reference>
<Reference>
<Citation>Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New Engl J Med. 2020:1-9. https://doi.org/10.1056/NEJMoa2001316</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Liu Q, Guo D. Coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-423. https://doi.org/10.1002/jmv.25681</Citation>
</Reference>
<Reference>
<Citation>Zhang N, Wang L, Deng X, et al. Recent advances in the detection of respiratory virus infection in humans. J Med Virol. 2020;92(4):408-417. https://doi.org/10.1002/jmv.25674</Citation>
</Reference>
<Reference>
<Citation>Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221-236. https://doi.org/10.1080/22221751.2020.1719902</Citation>
</Reference>
<Reference>
<Citation>Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, selenoproteins and viral infection. Nutrients. 2019;11:2101. https://doi.org/10.3390/nu11092101</Citation>
</Reference>
<Reference>
<Citation>Kantoch M, Litwinska B, Szkoda M, Siennicka J. Importance of vitamin A deficiency in pathology and immunology of viral infections. Rocz Panstw Zakl Hig. 2002;53:385-392.</Citation>
</Reference>
<Reference>
<Citation>Semba RD. Vitamin A and immunity to viral, bacterial and protozoan infections. Proc Nutr Soc. 1999;58:719-727. https://doi.org/10.1017/s0029665199000944</Citation>
</Reference>
<Reference>
<Citation>Villamor E, Mbise R, Spiegelman D, et al. Vitamin A supplements ameliorate the adverse effect of HIV-1, malaria, and diarrheal infections on child growth. Pediatrics. 2002;109:e6. https://doi.org/10.1542/peds.109.1.e6</Citation>
</Reference>
<Reference>
<Citation>Jee J, Hoet AE, Azevedo MP, et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am J Vet Res. 2013;74:1353-1362. https://doi.org/10.2460/ajvr.74.10.1353</Citation>
</Reference>
<Reference>
<Citation>West CE, Sijtsma SR, Kouwenhoven B, Rombout JH, van der Zijpp AJ. Epithelia-damaging virus infections affect vitamin A status in chickens. J Nutr. 1992;122:333-339. https://doi.org/10.1093/jn/122.2.333</Citation>
</Reference>
<Reference>
<Citation>Trottier C, Colombo M, Mann KK, Miller WH Jr., Ward BJ. Retinoids inhibit measles virus through a type I IFN-dependent bystander effect. FASEB J. 2009;23:3203-3212. https://doi.org/10.1096/fj.09-129288</Citation>
</Reference>
<Reference>
<Citation>Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 2003;77:1352-1360. https://doi.org/10.1093/ajcn/77.6.1352</Citation>
</Reference>
<Reference>
<Citation>Keil SD, Bowen R, Marschner S. Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion. 2016;56:2948-2952. https://doi.org/10.1111/trf.13860</Citation>
</Reference>
<Reference>
<Citation>Kyme P, Thoennissen NH, Tseng CW, et al. C/EBPepsilon mediates nicotinamide-enhanced clearance of Staphylococcus aureus in mice. J Clin Invest. 2012;122:3316-3329. https://doi.org/10.1172/JCI62070</Citation>
</Reference>
<Reference>
<Citation>Jones HD, Yoo J, Crother TR, et al. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration. PLOS One. 2015;10:e0123460. https://doi.org/10.1371/journal.pone.0123460</Citation>
</Reference>
<Reference>
<Citation>Hemila H. Vitamin C and SARS coronavirus. J Antimicrob Chemother. 2003;52:1049-1050. https://doi.org/10.1093/jac/dkh002</Citation>
</Reference>
<Reference>
<Citation>Atherton JG, Kratzing CC, Fisher A. The effect of ascorbic acid on infection chick-embryo ciliated tracheal organ cultures by coronavirus. Arch Virol. 1978;56:195-199. https://doi.org/10.1007/bf01317848</Citation>
</Reference>
<Reference>
<Citation>Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol. 2002;71:16-32.</Citation>
</Reference>
<Reference>
<Citation>Hemila H. Vitamin C intake and susceptibility to pneumonia. Pediatr Infect Dis J. 1997;16:836-837. https://doi.org/10.1097/00006454-199709000-00003</Citation>
</Reference>
<Reference>
<Citation>Tangpricha V, Pearce EN, Chen TC, Holick MF. Vitamin D insufficiency among free-living healthy young adults. Am J Med. 2002;112:659-662. https://doi.org/10.1016/s0002-9343(02)01091-4</Citation>
</Reference>
<Reference>
<Citation>Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80:1678S-1688S. https://doi.org/10.1093/ajcn/80.6.1678S</Citation>
</Reference>
<Reference>
<Citation>Nonnecke BJ, McGill JL, Ridpath JF, Sacco RE, Lippolis JD, Reinhardt TA. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J Dairy Sci. 2014;97:5566-5579. https://doi.org/10.3168/jds.2014-8293</Citation>
</Reference>
<Reference>
<Citation>Galmes S, Serra F, Palou A. Vitamin E metabolic effects and genetic variants: a challenge for precision nutrition in obesity and associated disturbances. Nutrients. 2018;10:1919. https://doi.org/10.3390/nu10121919</Citation>
</Reference>
<Reference>
<Citation>Beck MA, Kolbeck PC, Rohr LH, Shi Q, Morris VC, Levander OA. Vitamin E deficiency intensifies the myocardial injury of coxsackievirus B3 infection of mice. J Nutr. 1994;124:345-358. https://doi.org/10.1093/jn/124.3.345</Citation>
</Reference>
<Reference>
<Citation>Beck MA. Increased virulence of coxsackievirus B3 in mice due to vitamin E or selenium deficiency. J Nutr. 1997;127:966S-970S. https://doi.org/10.1093/jn/127.5.966S</Citation>
</Reference>
<Reference>
<Citation>Cai C, Koch B, Morikawa K, et al. Macrophage-derived extracellular vesicles induce long-lasting immunity against hepatitis C virus which is blunted by polyunsaturated fatty acids. Front Immunol. 2018;9:723. https://doi.org/10.3389/fimmu.2018.00723</Citation>
</Reference>
<Reference>
<Citation>Begin ME, Manku MS, Horrobin DF. Plasma fatty acid levels in patients with acquired immune deficiency syndrome and in controls. Prostaglandins Leukot Essent Fatty Acids. 1989;37:135-137. https://doi.org/10.1016/0952-3278(89)90110-5</Citation>
</Reference>
<Reference>
<Citation>Morita M, Kuba K, Ichikawa A, et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 2013;153:112-125. https://doi.org/10.1016/j.cell.2013.02.027</Citation>
</Reference>
<Reference>
<Citation>Leu GZ, Lin TY, Hsu JT. Anti-HCV activities of selective polyunsaturated fatty acids. Biochem Biophys Res Commun. 2004;318:275-280. https://doi.org/10.1016/j.bbrc.2004.04.019</Citation>
</Reference>
<Reference>
<Citation>Rayman MP. Selenium and human health. Lancet. 2012;379:1256-1268. https://doi.org/10.1016/S0140-6736(11)61452-9</Citation>
</Reference>
<Reference>
<Citation>Beck MA, Matthews CC. Micronutrients and host resistance to viral infection. Proc Nutr Soc. 2000;59:581-585. https://doi.org/10.1017/s0029665100000823</Citation>
</Reference>
<Reference>
<Citation>Harthill M. Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res. 2011;143:1325-1336. https://doi.org/10.1007/s12011-011-8977-1</Citation>
</Reference>
<Reference>
<Citation>Beck MA, Nelson HK, Shi Q, et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J. 2001;15:1481-1483</Citation>
</Reference>
<Reference>
<Citation>Beck MA, Shi Q, Morris VC, Levander OA. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med. 1995;1:433-436. https://doi.org/10.1038/nm0595-433</Citation>
</Reference>
<Reference>
<Citation>Ma X, Bi S, Wang Y, Chi X, Hu S. Combined adjuvant effect of ginseng stem-leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens. Poult Sci. 2019;98:3548-3556. https://doi.org/10.3382/ps/pez207</Citation>
</Reference>
<Reference>
<Citation>Maares M, Haase H. Zinc and immunity: an essential interrelation. Arch Biochem Biophys. 2016;611:58-65. https://doi.org/10.1016/j.abb.2016.03.022</Citation>
</Reference>
<Reference>
<Citation>Tuerk MJ, Fazel N. Zinc deficiency. Curr Opin Gastroenterol. 2009;25:136-143. https://doi.org/10.1097/MOG.0b013e328321b395</Citation>
</Reference>
<Reference>
<Citation>Awotiwon AA, Oduwole O, Sinha A, Okwundu CI. Zinc supplementation for the treatment of measles in children. Cochrane Database Syst Rev. 2017;2017(6):CD011177. https://doi.org/10.1002/14651858.CD011177.pub3</Citation>
</Reference>
<Reference>
<Citation>te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathog. 2010;6:e1001176. https://doi.org/10.1371/journal.ppat.1001176</Citation>
</Reference>
<Reference>
<Citation>Wessling-Resnick M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 2018;38:431-458. https://doi.org/10.1146/annurev-nutr-082117-051749</Citation>
</Reference>
<Reference>
<Citation>Jayaweera J, Reyes M, Joseph A. Childhood iron deficiency anemia leads to recurrent respiratory tract infections and gastroenteritis. Sci Rep. 2019;9:12637. https://doi.org/10.1038/s41598-019-49122-z</Citation>
</Reference>
<Reference>
<Citation>Pei J, Sekellick MJ, Marcus PI, Choi IS, Collisson EW. Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J Interferon Cytokine Res. 2001;21:1071-1077. https://doi.org/10.1089/107999001317205204</Citation>
</Reference>
<Reference>
<Citation>Turner RB, Felton A, Kosak K, Kelsey DK, Meschievitz CK. Prevention of experimental coronavirus colds with intranasal alpha-2b interferon. J Infect Dis. 1986;154:443-447. https://doi.org/10.1093/infdis/154.3.443</Citation>
</Reference>
<Reference>
<Citation>Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl J Jr. Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun. 2005;326:905-908. https://doi.org/10.1016/j.bbrc.2004.11.128</Citation>
</Reference>
<Reference>
<Citation>Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004;31:69-75. https://doi.org/10.1016/j.jcv.2004.03.003</Citation>
</Reference>
<Reference>
<Citation>Kuri T, Zhang X, Habjan M, et al. Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. J Gen Virol. 2009;90:2686-2694. https://doi.org/10.1099/vir.0.013599-0</Citation>
</Reference>
<Reference>
<Citation>Tan ELC, Ooi EE, Lin CY, et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis. 2004;10:581-586. https://doi.org/10.3201/eid1004.030458</Citation>
</Reference>
<Reference>
<Citation>Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358:958-965. https://doi.org/10.1016/s0140-6736(01)06102-5</Citation>
</Reference>
<Reference>
<Citation>Haagmans BL, Kuiken T, Martina BE, et al. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med. 2004;10:290-293. https://doi.org/10.1038/nm1001</Citation>
</Reference>
<Reference>
<Citation>Bijlenga G. Proposal for vaccination against SARS coronavirus using avian infectious bronchitis virus strain H from The Netherlands. J Infect. 2005;51:263-265. https://doi.org/10.1016/j.jinf.2005.04.010</Citation>
</Reference>
<Reference>
<Citation>Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 2003;290:3222-3228. https://doi.org/10.1001/jama.290.24.3222</Citation>
</Reference>
<Reference>
<Citation>Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review. J Infect Public Health. 2018;11:9-17. https://doi.org/10.1016/j.jiph.2017.08.009</Citation>
</Reference>
<Reference>
<Citation>Bussel JB, Szatrowski TP. Uses of intravenous gammaglobulin in immune hematologic disease. Immunol Invest. 1995;24:451-456. https://doi.org/10.3109/08820139509062794</Citation>
</Reference>
<Reference>
<Citation>Lew TWK. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290:374-380. https://doi.org/10.1001/jama.290.3.374</Citation>
</Reference>
<Reference>
<Citation>Dalakas MC, Clark WM. Strokes, thromboembolic events, and IVIg: rare incidents blemish an excellent safety record. Neurology. 2003;60:1736-1737. https://doi.org/10.1212/01.wnl.0000074394.15882.83</Citation>
</Reference>
<Reference>
<Citation>Matteucci C, Grelli S, Balestrieri E, et al. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol. 2017;12:141-155. https://doi.org/10.2217/fmb-2016-0125</Citation>
</Reference>
<Reference>
<Citation>Costantini C, Bellet MM, Pariano M, et al. A reappraisal of thymosin alpha1 in cancer therapy. Front Oncol. 2019;9:873. https://doi.org/10.3389/fonc.2019.00873</Citation>
</Reference>
<Reference>
<Citation>Pica F, Gaziano R, Casalinuovo IA, et al. Serum thymosin alpha 1 levels in normal and pathological conditions. Expert Opin Biol Ther. 2018;18:13-21. https://doi.org/10.1080/14712598.2018.1474197</Citation>
</Reference>
<Reference>
<Citation>Baumann CA, Badamchian M, Goldstein AL. Thymosin alpha 1 antagonizes dexamethasone and CD3-induced apoptosis of CD4+ CD8+ thymocytes through the activation of cAMP and protein kinase C dependent second messenger pathways. Mech Ageing Dev. 1997;94:85-101. https://doi.org/10.1016/s0047-6374(96)01860-x</Citation>
</Reference>
<Reference>
<Citation>Gao ZC, Zhu JH, Sun Y, et al. Clinical investigation of outbreak of nosocomial severe acute respiratory syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2003;15:332-335</Citation>
</Reference>
<Reference>
<Citation>Kumar V, Jung YS, Liang PH. Anti-SARS coronavirus agents: a patent review (2008-present). Expert Opin Ther Pat. 2013;23:1337-1348. https://doi.org/10.1517/13543776.2013.823159</Citation>
</Reference>
<Reference>
<Citation>Duchateau J, Servais G, Vreyens R, Delespesse G, Bolla K. Modulation of immune response in aged humans through different administration modes of thymopentin. Surv Immunol Res. 1985;4(suppl 1):94-101.</Citation>
</Reference>
<Reference>
<Citation>Duchateau J, Delespesse G, Bolla K. Phase variation in the modulation of the human immune response. Immunol Today. 1983;4:213-214. https://doi.org/10.1016/0167-5699(83)90028-2</Citation>
</Reference>
<Reference>
<Citation>Zaruba K, Rastorfer M, Grob PJ, Joller-Jemelka H, Bolla K. Thymopentin as adjuvant in non-responders or hyporesponders to hepatitis B vaccination. Lancet. 1983;2:1245. https://doi.org/10.1016/s0140-6736(83)91284-9</Citation>
</Reference>
<Reference>
<Citation>Renoux G. The general immunopharmacology of levamisole. Drugs. 1980;20:89-99. https://doi.org/10.2165/00003495-198020020-00001</Citation>
</Reference>
<Reference>
<Citation>Joffe MI, Sukha NR, Rabson AR. Lymphocyte subsets in measles. Depressed helper/inducer subpopulation reversed by in vitro treatment with levamisole and ascorbic acid. J Clin Invest. 1983;72:971-980. https://doi.org/10.1172/JCI111069</Citation>
</Reference>
<Reference>
<Citation>Ziaei M, Ziaei F, Manzouri B. Systemic cyclosporine and corneal transplantation. Int Ophthalmol. 2016;36:139-146. https://doi.org/10.1007/s10792-015-0137-8</Citation>
</Reference>
<Reference>
<Citation>Luo C, Luo H, Zheng S, et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun. 2004;321:557-565. https://doi.org/10.1016/j.bbrc.2004.07.003</Citation>
</Reference>
<Reference>
<Citation>Dawar FU, Tu J, Khattak MN, et al. Factor in virus replication and potential target for anti-viral therapy. Curr Issues Mol Biol. 2017;21:1-20. https://doi.org/10.21775/cimb.021.001</Citation>
</Reference>
<Reference>
<Citation>Pfefferle S, Schöpf J, Kögl M, et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLOS Pathog. 2011;7:e1002331. https://doi.org/10.1371/journal.ppat.1002331</Citation>
</Reference>
<Reference>
<Citation>Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045-2046. https://doi.org/10.1016/s0140-6736(03)13615-x</Citation>
</Reference>
<Reference>
<Citation>Park JY, Jeong HJ, Kim JH, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull. 2012;35:2036-2042. https://doi.org/10.1248/bpb.b12-00623</Citation>
</Reference>
<Reference>
<Citation>Chen L, Gui C, Luo X, et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol. 2005;79:7095-7103. https://doi.org/10.1128/JVI.79.11.7095-7103.2005</Citation>
</Reference>
<Reference>
<Citation>Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41</Citation>
</Reference>
<Reference>
<Citation>Shimizu JF, Lima CS, Pereira CM, et al. Flavonoids from pterogyne nitens inhibit hepatitis C virus entry. Sci Rep. 2017;7(1):16127. https://doi.org/10.1038/s41598-017-16336-y</Citation>
</Reference>
<Reference>
<Citation>Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35:145-151. https://doi.org/10.1080/14756366.2019.1690480</Citation>
</Reference>
<Reference>
<Citation>Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des. 2019;94:2023-2030. https://doi.org/10.1111/cbdd.13604</Citation>
</Reference>
<Reference>
<Citation>Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem. 2010;18:7940-7947. https://doi.org/10.1016/j.bmc.2010.09.035</Citation>
</Reference>
<Reference>
<Citation>Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci. 2004;61:2704-2713. https://doi.org/10.1007/s00018-004-4240-7</Citation>
</Reference>
<Reference>
<Citation>Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-454. https://doi.org/10.1038/nature02145</Citation>
</Reference>
<Reference>
<Citation>Dimitrov DS. The secret life of ACE2 as a receptor for the SARS virus. Cell. 2003;115:652-653. https://doi.org/10.1016/s0092-8674(03)00976-0</Citation>
</Reference>
<Reference>
<Citation>Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA. 2004;101:4240-4245. https://doi.org/10.1073/pnas.0306446101</Citation>
</Reference>
<Reference>
<Citation>Yeung KS, Yamanaka GA, Meanwell NA. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Med Res Rev. 2006;26:414-433. https://doi.org/10.1002/med.20055</Citation>
</Reference>
<Reference>
<Citation>Sui J, Li W, Murakami A, et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA. 2004;101:2536-2541. https://doi.org/10.1073/pnas.0307140101</Citation>
</Reference>
<Reference>
<Citation>Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. 2003;3:722-727. https://doi.org/10.1016/s1473-3099(03)00806-5</Citation>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. https://doi.org/10.1186/1743-422X-2-69</Citation>
</Reference>
<Reference>
<Citation>Alves DS, Perez-Fons L, Estepa A, Micol V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol. 2004;68:549-561. https://doi.org/10.1016/j.bcp.2004.04.012</Citation>
</Reference>
<Reference>
<Citation>Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007;74:92-101. https://doi.org/10.1016/j.antiviral.2006.04.014</Citation>
</Reference>
<Reference>
<Citation>Zhang XW, Yap YL. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg Med Chem. 2004;12:2517-2521. https://doi.org/10.1016/j.bmc.2004.03.035</Citation>
</Reference>
<Reference>
<Citation>Trampczynska A, Bottcher C, Clemens S. The transition metal chelator nicotianamine is synthesized by filamentous fungi. FEBS Lett. 2006;580:3173-3178. https://doi.org/10.1016/j.febslet.2006.04.073</Citation>
</Reference>
<Reference>
<Citation>Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, Sugiyama T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed Res. 2015;36:219-224. https://doi.org/10.2220/biomedres.36.219</Citation>
</Reference>
<Reference>
<Citation>Wenzel RP, Edmond MB. Managing SARS amidst uncertainty. N Engl J Med. 2003;348:1947-1948. https://doi.org/10.1056/NEJMp030072</Citation>
</Reference>
<Reference>
<Citation>Cyranoski D. Critics slam treatment for SARS as ineffective and perhaps dangerous. Nature. 2003;423:4. https://doi.org/10.1038/423004a</Citation>
</Reference>
<Reference>
<Citation>Booth CM. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289:2801-2809. https://doi.org/10.1001/jama.289.21.JOC30885</Citation>
</Reference>
<Reference>
<Citation>Tsang K, Zhong NS. SARS: pharmacotherapy. Respirology. 2003;8(suppl):S25-S30. https://doi.org/10.1046/j.1440-1843.2003.00525.x</Citation>
</Reference>
<Reference>
<Citation>Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11:222. https://doi.org/10.1038/s41467-019-13940-6</Citation>
</Reference>
<Reference>
<Citation>Chu CM. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252-256. https://doi.org/10.1136/thorax.2003.012658</Citation>
</Reference>
<Reference>
<Citation>Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome. Antivir Ther. 2016;21:455-459. https://doi.org/10.3851/IMP3002</Citation>
</Reference>
<Reference>
<Citation>Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018;9(2):e00221-18. https://doi.org/10.1128/mBio.00221-18</Citation>
</Reference>
<Reference>
<Citation>Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020:NEJMoa2001191. https://doi.org/10.1056/NEJMoa2001191</Citation>
</Reference>
<Reference>
<Citation>Jarvis B, Faulds D. Nelfinavir. A review of its therapeutic efficacy in HIV infection. Drugs. 1998;56:147-167. https://doi.org/10.2165/00003495-199856010-00013</Citation>
</Reference>
<Reference>
<Citation>Yamamoto N, Yang R, Yoshinaka Y, et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun. 2004;318:719-725. https://doi.org/10.1016/j.bbrc.2004.04.083</Citation>
</Reference>
<Reference>
<Citation>Blaising J, Polyak SJ, Pecheur EI. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014;107:84-94. https://doi.org/10.1016/j.antiviral.2014.04.006</Citation>
</Reference>
<Reference>
<Citation>Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem. 2008;15:997-1005. https://doi.org/10.2174/092986708784049658</Citation>
</Reference>
<Reference>
<Citation>Pécheur EI, Borisevich V, Halfmann P, et al. The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses. J Virol. 2016;90:3086-3092. https://doi.org/10.1128/JVI.02077-15</Citation>
</Reference>
<Reference>
<Citation>Khamitov RA, Loginova S, Shchukina VN, Borisevich SV, Maksimov VA, Shuster AM. [Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures]. Vopr Virusol. 2008;53:9-13</Citation>
</Reference>
<Reference>
<Citation>Robbins RA, Grisham MB. Nitric oxide. Int J Biochem Cell Biol. 1997;29:857-860. https://doi.org/10.1016/s1357-2725(96)00167-7</Citation>
</Reference>
<Reference>
<Citation>Barnes PJ. Nitric oxide and airway disease. Ann Med. 1995;27:389-393. https://doi.org/10.3109/07853899509002592</Citation>
</Reference>
<Reference>
<Citation>Rossaint R, Gerlach H, Schmidt-Ruhnke H, et al. Efficacy of inhaled nitric oxide in patients with severe ARDS. Chest. 1995;107:1107-1115. https://doi.org/10.1378/chest.107.4.1107</Citation>
</Reference>
<Reference>
<Citation>Hui DS. An overview on severe acute respiratory syndrome (SARS). Monaldi Arch Chest Dis. 2005;63:149-157. https://doi.org/10.4081/monaldi.2005.632</Citation>
</Reference>
<Reference>
<Citation>Akerstrom S, Mousavi-Jazi M, Klingstrom J, Leijon M, Lundkvist A, Mirazimi A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol. 2005;79:1966-1969. https://doi.org/10.1128/JVI.79.3.1966-1969.2005</Citation>
</Reference>
<Reference>
<Citation>Sachse G, Willms B. Efficacy of thioctic acid in the therapy of peripheral diabetic neuropathy. Horm Metab Res Suppl. 1980;9:105-107.</Citation>
</Reference>
<Reference>
<Citation>Tibullo D, Li Volti G, Giallongo C, et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res. 2017;66:947-959. https://doi.org/10.1007/s00011-017-1079-6</Citation>
</Reference>
<Reference>
<Citation>El-Senousey HK, Chen B, Wang JY, Atta AM, Mohamed FR, Nie QH. Effects of dietary vitamin C, vitamin E, and alpha-lipoic acid supplementation on the antioxidant defense system and immune-related gene expression in broilers exposed to oxidative stress by dexamethasone. Poult Sci. 2018;97:30-38. https://doi.org/10.3382/ps/pex298</Citation>
</Reference>
<Reference>
<Citation>Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DTY. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis. 2008;197:812-816. https://doi.org/10.1086/528377</Citation>
</Reference>
<Reference>
<Citation>Baur A, Harrer T, Peukert M, Jahn G, Kalden JR, Fleckenstein B. Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication. Klin Wochenschr. 1991;69:722-724. https://doi.org/10.1007/bf01649442</Citation>
</Reference>
<Reference>
<Citation>Marriott I, Huet-Hudson YM. Sexual dimorphism in innate immune responses to infectious organisms. Immunol Res. 2006;34:177-192. https://doi.org/10.1385/IR:34:3:177</Citation>
</Reference>
<Reference>
<Citation>Karlberg J, Chong DS, Lai WY. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am J Epidemiol. 2004;159:229-231. https://doi.org/10.1093/aje/kwh056</Citation>
</Reference>
<Reference>
<Citation>Leong HN, Earnest A, Lim HH, et al. SARS in Singapore--predictors of disease severity. Ann Acad Med Singapore. 2006;35:326-331.</Citation>
</Reference>
<Reference>
<Citation>Alghamdi I, Hussain I, Alghamdi M, Almalki S, Alghamdi M, Elsheemy M. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int J Gen Med. 2014;7:417-423. https://doi.org/10.2147/IJGM.S67061</Citation>
</Reference>
<Reference>
<Citation>Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J Immunol. 2017;198:4046-4053. https://doi.org/10.4049/jimmunol.1601896</Citation>
</Reference>
<Reference>
<Citation>Wei L, Sun S, Zhang J, et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010;88:723-730. https://doi.org/10.1139/O10-022</Citation>
</Reference>
<Reference>
<Citation>Peretz J, Pekosz A, Lane AP, Klein SL. Estrogenic compounds reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors. Am J Physiol Lung Cell Mol Physiol. 2016;310:L415-L425. https://doi.org/10.1152/ajplung.00398.2015</Citation>
</Reference>
<Reference>
<Citation>Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17:144. https://doi.org/10.1186/s12879-017-2253-8</Citation>
</Reference>
<Reference>
<Citation>Li Q, Zhao Z, Zhou D, et al. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011;32:1518-1525. https://doi.org/10.1016/j.peptides.2011.05.015</Citation>
</Reference>
<Reference>
<Citation>Cavanagh D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 2003;32:567-582. https://doi.org/10.1080/03079450310001621198</Citation>
</Reference>
<Reference>
<Citation>Escriou N, Callendret B, Lorin V, et al. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology. 2014;452-453:32-41. https://doi.org/10.1016/j.virol.2014.01.002</Citation>
</Reference>
<Reference>
<Citation>Bodmer BS, Fiedler AH, Hanauer JRH, Prufer S, Muhlebach MD. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology. 2018;521:99-107. https://doi.org/10.1016/j.virol.2018.05.028</Citation>
</Reference>
<Reference>
<Citation>Frantz PN, Teeravechyan S, Tangy F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 2018;20:493-500. https://doi.org/10.1016/j.micinf.2018.01.005</Citation>
</Reference>
<Reference>
<Citation>ter Meulen J, van den Brink EN, Poon LLM, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLOS Med. 2006;3:e237. https://doi.org/10.1371/journal.pmed.0030237</Citation>
</Reference>
<Reference>
<Citation>ter Meulen J, Bakker AB, van den Brink EN, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004;363:2139-2141. https://doi.org/10.1016/S0140-6736(04)16506-9</Citation>
</Reference>
<Reference>
<Citation>Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 2016;14:152-157. https://doi.org/10.2450/2015.0131-15</Citation>
</Reference>
<Reference>
<Citation>Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus. 2015;4:709. https://doi.org/10.1186/s40064-015-1490-9</Citation>
</Reference>
<Reference>
<Citation>Cheng Y, Wong R, Soo YOY, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24:44-46. https://doi.org/10.1007/s10096-004-1271-9</Citation>
</Reference>
<Reference>
<Citation>Soo YOY, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004;10:676-678. https://doi.org/10.1111/j.1469-0691.2004.00956.x</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000802 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000802 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32052466
   |texte=   Potential interventions for novel coronavirus in China: A systematic review.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32052466" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021