Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19.

Identifieur interne : 000759 ( PubMed/Corpus ); précédent : 000758; suivant : 000760

Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19.

Auteurs : Katelyn Gostic ; Ana Cr Gomez ; Riley O. Mummah ; Adam J. Kucharski ; James O. Lloyd-Smith

Source :

RBID : pubmed:32091395

English descriptors

Abstract

Traveller screening is being used to limit further spread of COVID-19 following its recent emergence, and symptom screening has become a ubiquitous tool in the global response. Previously, we developed a mathematical model to understand factors governing the effectiveness of traveller screening to prevent spread of emerging pathogens (Gostic et al., 2015). Here, we estimate the impact of different screening programs given current knowledge of key COVID-19 life history and epidemiological parameters. Even under best-case assumptions, we estimate that screening will miss more than half of infected people. Breaking down the factors leading to screening successes and failures, we find that most cases missed by screening are fundamentally undetectable, because they have not yet developed symptoms and are unaware they were exposed. Our work underscores the need for measures to limit transmission by individuals who become ill after being missed by a screening program. These findings can support evidence-based policy to combat the spread of COVID-19, and prospective planning to mitigate future emerging pathogens.

DOI: 10.7554/eLife.55570
PubMed: 32091395

Links to Exploration step

pubmed:32091395

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19.</title>
<author>
<name sortKey="Gostic, Katelyn" sort="Gostic, Katelyn" uniqKey="Gostic K" first="Katelyn" last="Gostic">Katelyn Gostic</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolution, University of Chicago, Chicago, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gomez, Ana Cr" sort="Gomez, Ana Cr" uniqKey="Gomez A" first="Ana Cr" last="Gomez">Ana Cr Gomez</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mummah, Riley O" sort="Mummah, Riley O" uniqKey="Mummah R" first="Riley O" last="Mummah">Riley O. Mummah</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kucharski, Adam J" sort="Kucharski, Adam J" uniqKey="Kucharski A" first="Adam J" last="Kucharski">Adam J. Kucharski</name>
<affiliation>
<nlm:affiliation>Department of Infectious Disease Epidemiology, London School of Tropical Hygiene and Medicine, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lloyd Smith, James O" sort="Lloyd Smith, James O" uniqKey="Lloyd Smith J" first="James O" last="Lloyd-Smith">James O. Lloyd-Smith</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32091395</idno>
<idno type="pmid">32091395</idno>
<idno type="doi">10.7554/eLife.55570</idno>
<idno type="wicri:Area/PubMed/Corpus">000759</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000759</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19.</title>
<author>
<name sortKey="Gostic, Katelyn" sort="Gostic, Katelyn" uniqKey="Gostic K" first="Katelyn" last="Gostic">Katelyn Gostic</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolution, University of Chicago, Chicago, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gomez, Ana Cr" sort="Gomez, Ana Cr" uniqKey="Gomez A" first="Ana Cr" last="Gomez">Ana Cr Gomez</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mummah, Riley O" sort="Mummah, Riley O" uniqKey="Mummah R" first="Riley O" last="Mummah">Riley O. Mummah</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kucharski, Adam J" sort="Kucharski, Adam J" uniqKey="Kucharski A" first="Adam J" last="Kucharski">Adam J. Kucharski</name>
<affiliation>
<nlm:affiliation>Department of Infectious Disease Epidemiology, London School of Tropical Hygiene and Medicine, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lloyd Smith, James O" sort="Lloyd Smith, James O" uniqKey="Lloyd Smith J" first="James O" last="Lloyd-Smith">James O. Lloyd-Smith</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Asymptomatic Infections</term>
<term>Betacoronavirus (isolation & purification)</term>
<term>Coronavirus Infections (diagnosis)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Infection Control</term>
<term>Mass Screening (methods)</term>
<term>Mass Screening (standards)</term>
<term>Pneumonia, Viral (diagnosis)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (transmission)</term>
<term>Risk Assessment</term>
<term>Travel</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mass Screening</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Mass Screening</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Asymptomatic Infections</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Infection Control</term>
<term>Risk Assessment</term>
<term>Travel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Traveller screening is being used to limit further spread of COVID-19 following its recent emergence, and symptom screening has become a ubiquitous tool in the global response. Previously, we developed a mathematical model to understand factors governing the effectiveness of traveller screening to prevent spread of emerging pathogens (Gostic et al., 2015). Here, we estimate the impact of different screening programs given current knowledge of key COVID-19 life history and epidemiological parameters. Even under best-case assumptions, we estimate that screening will miss more than half of infected people. Breaking down the factors leading to screening successes and failures, we find that most cases missed by screening are fundamentally undetectable, because they have not yet developed symptoms and are unaware they were exposed. Our work underscores the need for measures to limit transmission by individuals who become ill after being missed by a screening program. These findings can support evidence-based policy to combat the spread of COVID-19, and prospective planning to mitigate future emerging pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32091395</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2050-084X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>eLife</Title>
<ISOAbbreviation>Elife</ISOAbbreviation>
</Journal>
<ArticleTitle>Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.7554/eLife.55570</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e55570</ELocationID>
<Abstract>
<AbstractText>Traveller screening is being used to limit further spread of COVID-19 following its recent emergence, and symptom screening has become a ubiquitous tool in the global response. Previously, we developed a mathematical model to understand factors governing the effectiveness of traveller screening to prevent spread of emerging pathogens (Gostic et al., 2015). Here, we estimate the impact of different screening programs given current knowledge of key COVID-19 life history and epidemiological parameters. Even under best-case assumptions, we estimate that screening will miss more than half of infected people. Breaking down the factors leading to screening successes and failures, we find that most cases missed by screening are fundamentally undetectable, because they have not yet developed symptoms and are unaware they were exposed. Our work underscores the need for measures to limit transmission by individuals who become ill after being missed by a screening program. These findings can support evidence-based policy to combat the spread of COVID-19, and prospective planning to mitigate future emerging pathogens.</AbstractText>
<CopyrightInformation>© 2020, Gostic et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gostic</LastName>
<ForeName>Katelyn</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-9369-6371</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolution, University of Chicago, Chicago, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gomez</LastName>
<ForeName>Ana Cr</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mummah</LastName>
<ForeName>Riley O</ForeName>
<Initials>RO</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kucharski</LastName>
<ForeName>Adam J</ForeName>
<Initials>AJ</Initials>
<Identifier Source="ORCID">0000-0001-8814-9421</Identifier>
<AffiliationInfo>
<Affiliation>Department of Infectious Disease Epidemiology, London School of Tropical Hygiene and Medicine, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lloyd-Smith</LastName>
<ForeName>James O</ForeName>
<Initials>JO</Initials>
<Identifier Source="ORCID">0000-0001-7941-502X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Fogarty International Center, National Institutes of Health, Bethesda, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Postdoctoral fellowship in dynamic and multiscale systems</GrantID>
<Agency>James S. McDonnell Foundation</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>206250/Z/17/Z</GrantID>
<Agency>Wellcome</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>Science without borders fellowship</GrantID>
<Agency>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>DEB-1557022</GrantID>
<Agency>National Science Foundation</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>PREEMPT D18AC00031</GrantID>
<Agency>Defense Advanced Research Projects Agency</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>RC-2635</GrantID>
<Agency>Strategic Environmental Research and Development Program</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>RC-2635</GrantID>
<Agency>Strategic Environmental Reserach and Development Program</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Elife</MedlineTA>
<NlmUniqueID>101579614</NlmUniqueID>
<ISSNLinking>2050-084X</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058345" MajorTopicYN="Y">Asymptomatic Infections</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="Y">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="Y">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017053" MajorTopicYN="N">Infection Control</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008403" MajorTopicYN="Y">Mass Screening</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000592" MajorTopicYN="N">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="Y">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014195" MajorTopicYN="Y">Travel</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">emerging infectious disease</Keyword>
<Keyword MajorTopicYN="Y">epidemic containment</Keyword>
<Keyword MajorTopicYN="Y">epidemic control</Keyword>
<Keyword MajorTopicYN="Y">epidemiology</Keyword>
<Keyword MajorTopicYN="Y">global health</Keyword>
<Keyword MajorTopicYN="Y">human</Keyword>
<Keyword MajorTopicYN="Y">travel screening</Keyword>
<Keyword MajorTopicYN="Y">virus</Keyword>
</KeywordList>
<CoiStatement>KG, AG, RM, AK, JL No competing interests declared</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32091395</ArticleId>
<ArticleId IdType="doi">10.7554/eLife.55570</ArticleId>
<ArticleId IdType="pii">55570</ArticleId>
<ArticleId IdType="pmc">PMC7060038</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Intern Med. 2020 Mar 10;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 17;41(2):145-151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32064853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci China Life Sci. 2020 Mar 4;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32146694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2020 Feb 29;395(10225):689-697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32014114</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2020 Mar 6;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32144116</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 2008 Sep 7;254(1):178-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18572196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2020 Mar 11;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171059</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2020 Jan 29;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31995857</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2015 Feb 19;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25695520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2020 Feb;25(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32046816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Med. 2020 Feb 07;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32046137</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2020 Feb;25(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32046819</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):514-523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Infect Dis. 2010 Mar 30;10:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20353566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2009 Feb 12;14(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19215720</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2020 Feb 28;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109013</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071187</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2020 Feb 18;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32069388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2005 Nov 17;438(7066):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16292310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011 Jan 05;6(1):e14490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2020 Jan;25(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32019669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2020 Mar 21;395(10228):949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32087125</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Public Health. 2015 Nov;129(11):1471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296847</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):507-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32007143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2020 Feb 18;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32067043</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Med. 2020 Feb 04;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32033064</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMJ. 2014 Oct 14;349:g6202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25316030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000759 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000759 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32091395
   |texte=   Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32091395" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021