Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry.

Identifieur interne : 000666 ( PubMed/Corpus ); précédent : 000665; suivant : 000667

Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry.

Auteurs : Jian Shang ; Yushun Wan ; Chang Liu ; Boyd Yount ; Kendra Gully ; Yang Yang ; Ashley Auerbach ; Guiqing Peng ; Ralph Baric ; Fang Li

Source :

RBID : pubmed:32150576

English descriptors

Abstract

Coronaviruses recognize a variety of receptors using different domains of their envelope-anchored spike protein. How these diverse receptor recognition patterns affect viral entry is unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric membrane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where three NTDs are located. Receptor binding induces structural changes in the spike, weakening the interactions between S1 and S2. Using protease sensitivity and negative-stain EM analyses, we further showed that after protease treatment of the spike, receptor binding facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-fusion conformation. Together these results reveal a new role of receptor binding in MHV entry: in addition to its well-characterized role in viral attachment to host cells, receptor binding also induces the conformational change of the spike and hence the fusion of viral and host membranes. Our study provides new mechanistic insight into coronavirus entry and highlights the diverse entry mechanisms used by different viruses.

DOI: 10.1371/journal.ppat.1008392
PubMed: 32150576

Links to Exploration step

pubmed:32150576

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry.</title>
<author>
<name sortKey="Shang, Jian" sort="Shang, Jian" uniqKey="Shang J" first="Jian" last="Shang">Jian Shang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Yushun" sort="Wan, Yushun" uniqKey="Wan Y" first="Yushun" last="Wan">Yushun Wan</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang" sort="Liu, Chang" uniqKey="Liu C" first="Chang" last="Liu">Chang Liu</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gully, Kendra" sort="Gully, Kendra" uniqKey="Gully K" first="Kendra" last="Gully">Kendra Gully</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Auerbach, Ashley" sort="Auerbach, Ashley" uniqKey="Auerbach A" first="Ashley" last="Auerbach">Ashley Auerbach</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peng, Guiqing" sort="Peng, Guiqing" uniqKey="Peng G" first="Guiqing" last="Peng">Guiqing Peng</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32150576</idno>
<idno type="pmid">32150576</idno>
<idno type="doi">10.1371/journal.ppat.1008392</idno>
<idno type="wicri:Area/PubMed/Corpus">000666</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000666</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry.</title>
<author>
<name sortKey="Shang, Jian" sort="Shang, Jian" uniqKey="Shang J" first="Jian" last="Shang">Jian Shang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Yushun" sort="Wan, Yushun" uniqKey="Wan Y" first="Yushun" last="Wan">Yushun Wan</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang" sort="Liu, Chang" uniqKey="Liu C" first="Chang" last="Liu">Chang Liu</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gully, Kendra" sort="Gully, Kendra" uniqKey="Gully K" first="Kendra" last="Gully">Kendra Gully</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Auerbach, Ashley" sort="Auerbach, Ashley" uniqKey="Auerbach A" first="Ashley" last="Auerbach">Ashley Auerbach</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peng, Guiqing" sort="Peng, Guiqing" uniqKey="Peng G" first="Guiqing" last="Peng">Guiqing Peng</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Carcinoembryonic Antigen (chemistry)</term>
<term>Carcinoembryonic Antigen (metabolism)</term>
<term>Carcinoembryonic Antigen (ultrastructure)</term>
<term>Cell Line, Tumor</term>
<term>Cryoelectron Microscopy</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Membrane Fusion</term>
<term>Mice</term>
<term>Models, Molecular</term>
<term>Murine hepatitis virus (chemistry)</term>
<term>Murine hepatitis virus (physiology)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Conformation, alpha-Helical</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Proteolysis</term>
<term>Receptors, Virus (chemistry)</term>
<term>Receptors, Virus (metabolism)</term>
<term>Receptors, Virus (ultrastructure)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>SARS Virus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (ultrastructure)</term>
<term>Virus Attachment</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carcinoembryonic Antigen</term>
<term>Receptors, Virus</term>
<term>Recombinant Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carcinoembryonic Antigen</term>
<term>Receptors, Virus</term>
<term>Recombinant Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Carcinoembryonic Antigen</term>
<term>Receptors, Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Murine hepatitis virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Cryoelectron Microscopy</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Membrane Fusion</term>
<term>Mice</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Conformation, alpha-Helical</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Proteolysis</term>
<term>Virus Attachment</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses recognize a variety of receptors using different domains of their envelope-anchored spike protein. How these diverse receptor recognition patterns affect viral entry is unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric membrane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where three NTDs are located. Receptor binding induces structural changes in the spike, weakening the interactions between S1 and S2. Using protease sensitivity and negative-stain EM analyses, we further showed that after protease treatment of the spike, receptor binding facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-fusion conformation. Together these results reveal a new role of receptor binding in MHV entry: in addition to its well-characterized role in viral attachment to host cells, receptor binding also induces the conformational change of the spike and hence the fusion of viral and host membranes. Our study provides new mechanistic insight into coronavirus entry and highlights the diverse entry mechanisms used by different viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32150576</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008392</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1008392</ELocationID>
<Abstract>
<AbstractText>Coronaviruses recognize a variety of receptors using different domains of their envelope-anchored spike protein. How these diverse receptor recognition patterns affect viral entry is unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric membrane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where three NTDs are located. Receptor binding induces structural changes in the spike, weakening the interactions between S1 and S2. Using protease sensitivity and negative-stain EM analyses, we further showed that after protease treatment of the spike, receptor binding facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-fusion conformation. Together these results reveal a new role of receptor binding in MHV entry: in addition to its well-characterized role in viral attachment to host cells, receptor binding also induces the conformational change of the spike and hence the fusion of viral and host membranes. Our study provides new mechanistic insight into coronavirus entry and highlights the diverse entry mechanisms used by different viruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-2600-6059</Identifier>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Yushun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chang</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-1829-0117</Identifier>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yount</LastName>
<ForeName>Boyd</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gully</LastName>
<ForeName>Kendra</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0001-5742-2341</Identifier>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0001-9061-3828</Identifier>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Auerbach</LastName>
<ForeName>Ashley</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-8505-5905</Identifier>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Guiqing</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0001-8813-6663</Identifier>
<AffiliationInfo>
<Affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0001-6827-8701</Identifier>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-1958-366X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI089728</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002272">Carcinoembryonic Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C486183">Ceacam1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002272" MajorTopicYN="N">Carcinoembryonic Antigen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020285" MajorTopicYN="N">Cryoelectron Microscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="N">Membrane Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072756" MajorTopicYN="N">Protein Conformation, alpha-Helical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="N">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32150576</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1008392</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-19-01992</ArticleId>
<ArticleId IdType="pmc">PMC7082060</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502799</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2017 Jan;27(1):119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Feb;89(4):1954-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428871</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2018 Nov 27;92(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30258004</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1991 Dec;65(12):6881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2013 Jun;10(6):584-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644547</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2018 Aug 13;14(8):e1007236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30102747</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2012 Dec;180(3):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23000701</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2016 Jan;193(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol Screen. 2010 Oct;15(9):1099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855563</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):237-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27578435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1988 Dec;69 ( Pt 12):2939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3058868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2015 Oct;12(10):943-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26280328</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Neurochem Res. 2013 Jun;38(6):1092-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23054071</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25114257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2003 Nov;148(11):2207-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14579179</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Exp Cell Res. 1999 Nov 1;252(2):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11501563</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11157-11162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29073020</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2018 Apr 23;14(4):e1007009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29684066</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10696-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ultramicroscopy. 2013 Dec;135:24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23872039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2005 Oct;152(1):36-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16182563</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Oct;23(10):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):11819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414924</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2014 Dec 12;289(50):34520-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25359769</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 Oct 25;92(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29070693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2017 Feb 10;292(6):2174-2181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28035001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):6794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 2009 Nov 16;187(4):553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19948502</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2007 Jan;157(1):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2018 Oct 24;8(1):15701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30356097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000666 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000666 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32150576
   |texte=   Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32150576" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021