Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

Identifieur interne : 003066 ( PubMed/Checkpoint ); précédent : 003065; suivant : 003067

Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

Auteurs : Dave Cavanagh [Royaume-Uni]

Source :

RBID : pubmed:14676007

Descripteurs français

English descriptors

Abstract

Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response. Protection is short lived, the start of the decline being apparent 9 weeks after vaccination with vaccines based on highly attenuated strains. IBV exists as scores of serotypes (defined by the neutralization test), cross-protection often being poor. Consequently, chickens may be re-vaccinated, with the same or another serotype, two or three weeks later. Single applications of inactivated virus has generally led to protection of <50% of chickens. Two applications have led to 90 to 100% protection in some reports, but remaining below 50% in others. In practice in the field, inactivated vaccines are used in laying birds that have previously been primed with two or three live attenuated virus vaccinations. This increases protection of the laying birds against egg production losses and induces a sustained level of serum antibody, which is passed to progeny. The large spike glycoprotein (S) comprises a carboxy-terminal S2 subunit (approximately 625 amino acid residues), which anchors S in the virus envelope, and an amino-terminal S1 subunit (approximately 520 residues), believed to largely form the distal bulbous part of S. The S1 subunit (purified from IBV virus, expressed using baculovirus or expressed in birds from a fowlpoxvirus vector) induced virus neutralizing antibody. Although protective immune responses were induced, multiple inoculations were required and the percentage of protected chickens was too low (<50%) for commercial application. Remarkably, expression of S1 in birds using a non-pathogenic fowl adenovirus vector induced protection in 90% and 100% of chickens in two experiments. Differences of as little as 5% between the S1 sequences can result in poor cross-protection. Differences in S1 of 2 to 3% (10 to 15 amino acids) can change serotype, suggesting that a small number of epitopes are immunodominant with respect to neutralizing antibody. Initial studies of the role of the IBV nucleocapsid protein (N) in immunity suggested that immunization with bacterially expressed N, while not inducing protection directly, improved the induction of protection by a subsequent inoculation with inactivated IBV. In another study, two intramuscular immunizations of a plasmid expressing N induced protective immunity. The basis of immunity to IBV is not well understood. Serum antibody levels do not correlate with protection, although local antibody is believed to play a role. Adoptive transfer of IBV-infection-induced alphabeta T cells bearing CD8 antigen protected chicks from challenge infection. In conclusion, live attenuated IBV vaccines induce good, although short-lived, protection against homologous challenge, although a minority of individuals may respond poorly. Inactivated IBV vaccines are insufficiently efficacious when applied only once and in the absence of priming by live vaccine. Two applications of inactivated IBV are much more efficacious, although this is not a commercially viable proposition in the poultry industry. However, the cost and logistics of multiple application of a SARS inactivated vaccine would be more acceptable for the protection of human populations, especially if limited to targeted groups (e.g. health care workers and high-risk contacts). Application of a SARS vaccine is perhaps best limited to a minimal number of targeted individuals who can be monitored, as some vaccinated persons might, if infected by SARS coronavirus, become asymptomatic excretors of virus, thereby posing a risk to non-vaccinated people. Looking further into the future, the high efficacy of the fowl adenovirus vector expressing the IBV S1 subunit provides optimism for a live SARS vaccine, if that were deemed to be necessary, with the possibility of including the N protein gene.

DOI: 10.1080/03079450310001621198
PubMed: 14676007


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:14676007

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.</title>
<author>
<name sortKey="Cavanagh, Dave" sort="Cavanagh, Dave" uniqKey="Cavanagh D" first="Dave" last="Cavanagh">Dave Cavanagh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Newbury, Berkshire, UK. dave.cavanagh@bbsrc.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Newbury, Berkshire</wicri:regionArea>
<wicri:noRegion>Berkshire</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14676007</idno>
<idno type="pmid">14676007</idno>
<idno type="doi">10.1080/03079450310001621198</idno>
<idno type="wicri:Area/PubMed/Corpus">003042</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003042</idno>
<idno type="wicri:Area/PubMed/Curation">003042</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003042</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003066</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.</title>
<author>
<name sortKey="Cavanagh, Dave" sort="Cavanagh, Dave" uniqKey="Cavanagh D" first="Dave" last="Cavanagh">Dave Cavanagh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Newbury, Berkshire, UK. dave.cavanagh@bbsrc.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Newbury, Berkshire</wicri:regionArea>
<wicri:noRegion>Berkshire</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Avian pathology : journal of the W.V.P.A</title>
<idno type="ISSN">0307-9457</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chickens</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Humans</term>
<term>Infectious bronchitis virus (immunology)</term>
<term>Poultry Diseases (prevention & control)</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (prevention & control)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Vaccines, Attenuated</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Infections à coronavirus ()</term>
<term>Infections à coronavirus (médecine vétérinaire)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Maladies de la volaille ()</term>
<term>Poulets</term>
<term>Syndrome respiratoire aigu sévère ()</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Vaccins antiviraux</term>
<term>Vaccins atténués</term>
<term>Virus de la bronchite infectieuse (immunologie)</term>
<term>Virus du SRAS (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Vaccines, Attenuated</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Virus de la bronchite infectieuse</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Infectious bronchitis virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Poultry Diseases</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chickens</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Infections à coronavirus</term>
<term>Maladies de la volaille</term>
<term>Poulets</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Vaccins antiviraux</term>
<term>Vaccins atténués</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response. Protection is short lived, the start of the decline being apparent 9 weeks after vaccination with vaccines based on highly attenuated strains. IBV exists as scores of serotypes (defined by the neutralization test), cross-protection often being poor. Consequently, chickens may be re-vaccinated, with the same or another serotype, two or three weeks later. Single applications of inactivated virus has generally led to protection of <50% of chickens. Two applications have led to 90 to 100% protection in some reports, but remaining below 50% in others. In practice in the field, inactivated vaccines are used in laying birds that have previously been primed with two or three live attenuated virus vaccinations. This increases protection of the laying birds against egg production losses and induces a sustained level of serum antibody, which is passed to progeny. The large spike glycoprotein (S) comprises a carboxy-terminal S2 subunit (approximately 625 amino acid residues), which anchors S in the virus envelope, and an amino-terminal S1 subunit (approximately 520 residues), believed to largely form the distal bulbous part of S. The S1 subunit (purified from IBV virus, expressed using baculovirus or expressed in birds from a fowlpoxvirus vector) induced virus neutralizing antibody. Although protective immune responses were induced, multiple inoculations were required and the percentage of protected chickens was too low (<50%) for commercial application. Remarkably, expression of S1 in birds using a non-pathogenic fowl adenovirus vector induced protection in 90% and 100% of chickens in two experiments. Differences of as little as 5% between the S1 sequences can result in poor cross-protection. Differences in S1 of 2 to 3% (10 to 15 amino acids) can change serotype, suggesting that a small number of epitopes are immunodominant with respect to neutralizing antibody. Initial studies of the role of the IBV nucleocapsid protein (N) in immunity suggested that immunization with bacterially expressed N, while not inducing protection directly, improved the induction of protection by a subsequent inoculation with inactivated IBV. In another study, two intramuscular immunizations of a plasmid expressing N induced protective immunity. The basis of immunity to IBV is not well understood. Serum antibody levels do not correlate with protection, although local antibody is believed to play a role. Adoptive transfer of IBV-infection-induced alphabeta T cells bearing CD8 antigen protected chicks from challenge infection. In conclusion, live attenuated IBV vaccines induce good, although short-lived, protection against homologous challenge, although a minority of individuals may respond poorly. Inactivated IBV vaccines are insufficiently efficacious when applied only once and in the absence of priming by live vaccine. Two applications of inactivated IBV are much more efficacious, although this is not a commercially viable proposition in the poultry industry. However, the cost and logistics of multiple application of a SARS inactivated vaccine would be more acceptable for the protection of human populations, especially if limited to targeted groups (e.g. health care workers and high-risk contacts). Application of a SARS vaccine is perhaps best limited to a minimal number of targeted individuals who can be monitored, as some vaccinated persons might, if infected by SARS coronavirus, become asymptomatic excretors of virus, thereby posing a risk to non-vaccinated people. Looking further into the future, the high efficacy of the fowl adenovirus vector expressing the IBV S1 subunit provides optimism for a live SARS vaccine, if that were deemed to be necessary, with the possibility of including the N protein gene.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14676007</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0307-9457</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>32</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2003</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Avian pathology : journal of the W.V.P.A</Title>
<ISOAbbreviation>Avian Pathol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>567-82</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response. Protection is short lived, the start of the decline being apparent 9 weeks after vaccination with vaccines based on highly attenuated strains. IBV exists as scores of serotypes (defined by the neutralization test), cross-protection often being poor. Consequently, chickens may be re-vaccinated, with the same or another serotype, two or three weeks later. Single applications of inactivated virus has generally led to protection of <50% of chickens. Two applications have led to 90 to 100% protection in some reports, but remaining below 50% in others. In practice in the field, inactivated vaccines are used in laying birds that have previously been primed with two or three live attenuated virus vaccinations. This increases protection of the laying birds against egg production losses and induces a sustained level of serum antibody, which is passed to progeny. The large spike glycoprotein (S) comprises a carboxy-terminal S2 subunit (approximately 625 amino acid residues), which anchors S in the virus envelope, and an amino-terminal S1 subunit (approximately 520 residues), believed to largely form the distal bulbous part of S. The S1 subunit (purified from IBV virus, expressed using baculovirus or expressed in birds from a fowlpoxvirus vector) induced virus neutralizing antibody. Although protective immune responses were induced, multiple inoculations were required and the percentage of protected chickens was too low (<50%) for commercial application. Remarkably, expression of S1 in birds using a non-pathogenic fowl adenovirus vector induced protection in 90% and 100% of chickens in two experiments. Differences of as little as 5% between the S1 sequences can result in poor cross-protection. Differences in S1 of 2 to 3% (10 to 15 amino acids) can change serotype, suggesting that a small number of epitopes are immunodominant with respect to neutralizing antibody. Initial studies of the role of the IBV nucleocapsid protein (N) in immunity suggested that immunization with bacterially expressed N, while not inducing protection directly, improved the induction of protection by a subsequent inoculation with inactivated IBV. In another study, two intramuscular immunizations of a plasmid expressing N induced protective immunity. The basis of immunity to IBV is not well understood. Serum antibody levels do not correlate with protection, although local antibody is believed to play a role. Adoptive transfer of IBV-infection-induced alphabeta T cells bearing CD8 antigen protected chicks from challenge infection. In conclusion, live attenuated IBV vaccines induce good, although short-lived, protection against homologous challenge, although a minority of individuals may respond poorly. Inactivated IBV vaccines are insufficiently efficacious when applied only once and in the absence of priming by live vaccine. Two applications of inactivated IBV are much more efficacious, although this is not a commercially viable proposition in the poultry industry. However, the cost and logistics of multiple application of a SARS inactivated vaccine would be more acceptable for the protection of human populations, especially if limited to targeted groups (e.g. health care workers and high-risk contacts). Application of a SARS vaccine is perhaps best limited to a minimal number of targeted individuals who can be monitored, as some vaccinated persons might, if infected by SARS coronavirus, become asymptomatic excretors of virus, thereby posing a risk to non-vaccinated people. Looking further into the future, the high efficacy of the fowl adenovirus vector expressing the IBV S1 subunit provides optimism for a live SARS vaccine, if that were deemed to be necessary, with the possibility of including the N protein gene.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cavanagh</LastName>
<ForeName>Dave</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Newbury, Berkshire, UK. dave.cavanagh@bbsrc.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Avian Pathol</MedlineTA>
<NlmUniqueID>8210638</NlmUniqueID>
<ISSNLinking>0307-9457</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014613">Vaccines, Attenuated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="Y">Chickens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011201" MajorTopicYN="N">Poultry Diseases</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014613" MajorTopicYN="N">Vaccines, Attenuated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="Y">Viral Vaccines</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>110</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14676007</ArticleId>
<ArticleId IdType="doi">10.1080/03079450310001621198</ArticleId>
<ArticleId IdType="pii">Q15A0UT34KFXDLF5</ArticleId>
<ArticleId IdType="pmc">PMC7154303</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1986;15(3):367-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766539</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1992 Oct 31;131(18):408-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2003 Feb 15;306(2):376-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12642110</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1981 Apr;10(2):121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18770131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1997;26(3):553-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Gesamte Virusforsch. 1973;43(3):235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4772938</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2001 Jun;82(Pt 6):1273-1281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11369870</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1983 Dec;64 ( Pt 12):2577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6319549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1980 Mar 22;106(12):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6246669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2002 Apr 25;296(1):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1998 Apr;79 ( Pt 4):719-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9568966</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Res Vet Sci. 1979 May;26(3):329-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">229532</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2001 Aug;30(4):355-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1985 Apr;66 ( Pt 4):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2984320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1994;138(1-2):117-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7980002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):9084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMJ. 2003 Apr 19;326(7394):850-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702616</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1981 Jul-Sep;25(3):650-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6274293</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2000 Mar 30;269(1):183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725210</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1990 Jul;19(3):467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18679958</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1996 Jun;25(2):269-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18645858</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2002 Apr;31(2):157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12396360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Oct;84(Pt 10):2735-2744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13679608</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1986 Jul;67 ( Pt 7):1427-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3014052</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1990 Feb;174(2):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1689525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2001 Jan 20;279(2):371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1991 Jul-Sep;35(3):470-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1659365</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Dev Comp Immunol. 2000 Mar-Apr;24(2-3):187-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10717287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1996 Mar 2;138(9):208-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8686155</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Jul;71(7):5173-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188584</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 1985 Dec;12(3-4):271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3009515</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1996 Jan-Mar;40(1):114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8713024</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 1988 Sep;11(2):141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2462314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2003 Jun 20;21(21-22):2730-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12798610</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2001 Oct;30(5):535-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184943</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1983 Jul 16;113(3):64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310847</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1990 Sep;71 ( Pt 9):1929-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1698920</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2003 Mar 30;308(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1996 Dec;25(4):675-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18645891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1987 Jun 27;120(26):617-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2820108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 2000 Jul-Sep;44(3):568-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11007004</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 1992;10(2):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1311490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1986;15(1):93-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Res Vet Sci. 1984 Jul;37(1):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6089286</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1982 Oct-Dec;26(4):828-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6297448</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2001 Aug;30(4):423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184927</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 2001 Apr-Jun;45(2):416-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11417821</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1986;15(1):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766511</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 2001 May 26;148(21):649-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11400984</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1995-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1965 Apr;94:538-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14299027</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Br Poult Sci. 1989 Mar;30(1):39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2545316</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1999 Oct;28(5):477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26911602</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Dec;75(24):12359-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11711626</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 1987 Oct;15(1-2):31-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2449761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1987 Sep;68 ( Pt 9):2291-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2821170</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1987 Oct-Dec;31(4):820-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2831869</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1969 Oct 4;85(14):378-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5388980</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2003 Nov;148(11):2207-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14579179</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 2001 Apr-Jun;45(2):340-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11417813</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1997;26(4):677-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483939</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1976 Jan-Mar;20(1):42-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">176991</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1966 May;10(2):230-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4960464</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1997;26(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18484262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1991 Dec;72 ( Pt 12):2915-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1722501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1990 Oct-Dec;34(4):865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2177974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2002 Jun;31(3):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12396345</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1986;15(3):437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1985 Jan;14(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Oct;71(10):7889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9311878</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2002 Feb;31(1):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12425795</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1994 Dec;23(4):631-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18671130</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1985 Dec 7;117(23):612-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3002000</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1992 Aug;189(2):792-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1322604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1979;61(3):227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">227344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1393-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1997;26(3):625-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483932</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1977;6(2):131-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18770321</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1990 Oct-Dec;34(4):809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2177973</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Dec;76(24):12491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12438575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2001 Aug;30(4):411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1992;21(1):33-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2001 Dec;30(6):581-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184952</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1992 Mar;73 ( Pt 3):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1372036</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1984 Oct;13(4):733-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1997 Jul-Sep;41(3):661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9356713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1986 Jul;67 ( Pt 7):1435-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3014053</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 May 31;277(22):19727-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912215</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2000 Jun;29(3):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184806</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 2000 Apr-Jun;44(2):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10879913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1978;58(1):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">81044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 1976 Jan-Mar;20(1):199-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">176990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 2002 Oct-Dec;46(4):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495043</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1993 Sep;22(3):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18671042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1981 Jan;10(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18770117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 1990 Jul;19(3):435-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18679956</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Cavanagh, Dave" sort="Cavanagh, Dave" uniqKey="Cavanagh D" first="Dave" last="Cavanagh">Dave Cavanagh</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:14676007
   |texte=   Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:14676007" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021