Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles.

Identifieur interne : 002836 ( PubMed/Checkpoint ); précédent : 002835; suivant : 002837

An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles.

Auteurs : Parviz Ashtari [République populaire de Chine] ; Xiaoxiao He ; Kemin Wang ; Ping Gong

Source :

RBID : pubmed:18970204

Abstract

In this paper, an improved recovery method for target ssDNA using amino-modified silica-coated magnetic nanoparticles (ASMNPs) is reported. This method takes advantages of the amino-modified silica-coated magnetic nanoparticles prepared using water-in-oil microemulsion technique, which employs amino-modified silica as the shell and iron oxide as the core of the magnetic nanoparticles. The nanoparticles have a silica surface with amino groups and can be conjugated with any desired bio-molecules through many existing amino group chemistry. In this research, a linear DNA probe was immobilized onto nanoparticles through streptavidin conjugation using covalent bonds. A target ssDNA(I) (5'-TMR-CGCATAGGGCCTCGTGATAC-3') has been successfully recovered from a crude sample under a magnet field through their special recognition and hybridization. A designed ssDNA fragment of severe acute respiratory syndrome (SARS) virus at a much lower concentration than the target ssDNA(I) was also recovered with high efficiency and good selectivity.

DOI: 10.1016/j.talanta.2005.06.043
PubMed: 18970204


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18970204

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles.</title>
<author>
<name sortKey="Ashtari, Parviz" sort="Ashtari, Parviz" uniqKey="Ashtari P" first="Parviz" last="Ashtari">Parviz Ashtari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Life Science and Biological Technology, Hunan University & Engineering Research Center for Bio-Nanotechnology of Hunan Province, Changsha 410082, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Life Science and Biological Technology, Hunan University & Engineering Research Center for Bio-Nanotechnology of Hunan Province, Changsha 410082</wicri:regionArea>
<wicri:noRegion>Changsha 410082</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Xiaoxiao" sort="He, Xiaoxiao" uniqKey="He X" first="Xiaoxiao" last="He">Xiaoxiao He</name>
</author>
<author>
<name sortKey="Wang, Kemin" sort="Wang, Kemin" uniqKey="Wang K" first="Kemin" last="Wang">Kemin Wang</name>
</author>
<author>
<name sortKey="Gong, Ping" sort="Gong, Ping" uniqKey="Gong P" first="Ping" last="Gong">Ping Gong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:18970204</idno>
<idno type="pmid">18970204</idno>
<idno type="doi">10.1016/j.talanta.2005.06.043</idno>
<idno type="wicri:Area/PubMed/Corpus">001A40</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A40</idno>
<idno type="wicri:Area/PubMed/Curation">001A40</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A40</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002836</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002836</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles.</title>
<author>
<name sortKey="Ashtari, Parviz" sort="Ashtari, Parviz" uniqKey="Ashtari P" first="Parviz" last="Ashtari">Parviz Ashtari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Life Science and Biological Technology, Hunan University & Engineering Research Center for Bio-Nanotechnology of Hunan Province, Changsha 410082, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Life Science and Biological Technology, Hunan University & Engineering Research Center for Bio-Nanotechnology of Hunan Province, Changsha 410082</wicri:regionArea>
<wicri:noRegion>Changsha 410082</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Xiaoxiao" sort="He, Xiaoxiao" uniqKey="He X" first="Xiaoxiao" last="He">Xiaoxiao He</name>
</author>
<author>
<name sortKey="Wang, Kemin" sort="Wang, Kemin" uniqKey="Wang K" first="Kemin" last="Wang">Kemin Wang</name>
</author>
<author>
<name sortKey="Gong, Ping" sort="Gong, Ping" uniqKey="Gong P" first="Ping" last="Gong">Ping Gong</name>
</author>
</analytic>
<series>
<title level="j">Talanta</title>
<idno type="eISSN">1873-3573</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, an improved recovery method for target ssDNA using amino-modified silica-coated magnetic nanoparticles (ASMNPs) is reported. This method takes advantages of the amino-modified silica-coated magnetic nanoparticles prepared using water-in-oil microemulsion technique, which employs amino-modified silica as the shell and iron oxide as the core of the magnetic nanoparticles. The nanoparticles have a silica surface with amino groups and can be conjugated with any desired bio-molecules through many existing amino group chemistry. In this research, a linear DNA probe was immobilized onto nanoparticles through streptavidin conjugation using covalent bonds. A target ssDNA(I) (5'-TMR-CGCATAGGGCCTCGTGATAC-3') has been successfully recovered from a crude sample under a magnet field through their special recognition and hybridization. A designed ssDNA fragment of severe acute respiratory syndrome (SARS) virus at a much lower concentration than the target ssDNA(I) was also recovered with high efficiency and good selectivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">18970204</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3573</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>67</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2005</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Talanta</Title>
<ISOAbbreviation>Talanta</ISOAbbreviation>
</Journal>
<ArticleTitle>An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles.</ArticleTitle>
<Pagination>
<MedlinePgn>548-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.talanta.2005.06.043</ELocationID>
<Abstract>
<AbstractText>In this paper, an improved recovery method for target ssDNA using amino-modified silica-coated magnetic nanoparticles (ASMNPs) is reported. This method takes advantages of the amino-modified silica-coated magnetic nanoparticles prepared using water-in-oil microemulsion technique, which employs amino-modified silica as the shell and iron oxide as the core of the magnetic nanoparticles. The nanoparticles have a silica surface with amino groups and can be conjugated with any desired bio-molecules through many existing amino group chemistry. In this research, a linear DNA probe was immobilized onto nanoparticles through streptavidin conjugation using covalent bonds. A target ssDNA(I) (5'-TMR-CGCATAGGGCCTCGTGATAC-3') has been successfully recovered from a crude sample under a magnet field through their special recognition and hybridization. A designed ssDNA fragment of severe acute respiratory syndrome (SARS) virus at a much lower concentration than the target ssDNA(I) was also recovered with high efficiency and good selectivity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ashtari</LastName>
<ForeName>Parviz</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Life Science and Biological Technology, Hunan University & Engineering Research Center for Bio-Nanotechnology of Hunan Province, Changsha 410082, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xiaoxiao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Kemin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Talanta</MedlineTA>
<NlmUniqueID>2984816R</NlmUniqueID>
<ISSNLinking>0039-9140</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18970204</ArticleId>
<ArticleId IdType="pii">S0039-9140(05)00391-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.talanta.2005.06.043</ArticleId>
<ArticleId IdType="pmc">PMC7111873</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 1999 Feb 5;722(1-2):33-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10068132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2003 Jun 18;125(24):7168-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12797777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 2000 Aug 1;283(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10906245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Nanosci Nanotechnol. 2004 Jul;4(6):590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15518392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1993 Feb 25;21(4):1044</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8383838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1990 Mar;28(3):495-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1691208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 1996 Sep;12(9):339-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8855660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2003 Jul 15;75(14):3476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14570200</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 1998 Jul;36(1):37-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9622563</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioconjug Chem. 1999 Mar-Apr;10(2):186-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10077466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Chem Biol. 2004 Oct;8(5):547-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Pharm Biopharm. 1999 Mar;47(2):119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):317-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12908257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 1995 Jan;11(1):8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7900196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gong, Ping" sort="Gong, Ping" uniqKey="Gong P" first="Ping" last="Gong">Ping Gong</name>
<name sortKey="He, Xiaoxiao" sort="He, Xiaoxiao" uniqKey="He X" first="Xiaoxiao" last="He">Xiaoxiao He</name>
<name sortKey="Wang, Kemin" sort="Wang, Kemin" uniqKey="Wang K" first="Kemin" last="Wang">Kemin Wang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ashtari, Parviz" sort="Ashtari, Parviz" uniqKey="Ashtari P" first="Parviz" last="Ashtari">Parviz Ashtari</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002836 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002836 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18970204
   |texte=   An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18970204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021