Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures.

Identifieur interne : 002542 ( PubMed/Checkpoint ); précédent : 002541; suivant : 002543

Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures.

Auteurs : Keiko Nakagaki [Japon] ; Kazuhide Nakagaki ; Fumihiro Taguchi

Source :

RBID : pubmed:15857995

Descripteurs français

English descriptors

Abstract

Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.

DOI: 10.1128/JVI.79.10.6102-6110.2005
PubMed: 15857995


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15857995

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures.</title>
<author>
<name sortKey="Nakagaki, Keiko" sort="Nakagaki, Keiko" uniqKey="Nakagaki K" first="Keiko" last="Nakagaki">Keiko Nakagaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Lab. of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011 Japan. ftaguchi@nih.go.jp</nlm:affiliation>
<country wicri:rule="url">Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Nakagaki, Kazuhide" sort="Nakagaki, Kazuhide" uniqKey="Nakagaki K" first="Kazuhide" last="Nakagaki">Kazuhide Nakagaki</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15857995</idno>
<idno type="pmid">15857995</idno>
<idno type="doi">10.1128/JVI.79.10.6102-6110.2005</idno>
<idno type="wicri:Area/PubMed/Corpus">002767</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002767</idno>
<idno type="wicri:Area/PubMed/Curation">002767</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002767</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002542</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002542</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures.</title>
<author>
<name sortKey="Nakagaki, Keiko" sort="Nakagaki, Keiko" uniqKey="Nakagaki K" first="Keiko" last="Nakagaki">Keiko Nakagaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Lab. of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011 Japan. ftaguchi@nih.go.jp</nlm:affiliation>
<country wicri:rule="url">Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Nakagaki, Kazuhide" sort="Nakagaki, Kazuhide" uniqKey="Nakagaki K" first="Kazuhide" last="Nakagaki">Kazuhide Nakagaki</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Astrocytes</term>
<term>Coculture Techniques</term>
<term>Coronavirus Infections (metabolism)</term>
<term>Coronavirus Infections (virology)</term>
<term>Hepatitis Antibodies (immunology)</term>
<term>Mice</term>
<term>Microglia (metabolism)</term>
<term>Microglia (virology)</term>
<term>Murine hepatitis virus (pathogenicity)</term>
<term>Murine hepatitis virus (physiology)</term>
<term>Mutation</term>
<term>Neurons</term>
<term>Oligodendroglia</term>
<term>Receptors, Virus (metabolism)</term>
<term>Virulence</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps de l'hépatite (immunologie)</term>
<term>Astrocytes</term>
<term>Infections à coronavirus (métabolisme)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Microglie (métabolisme)</term>
<term>Microglie (virologie)</term>
<term>Mutation</term>
<term>Neurones</term>
<term>Oligodendroglie</term>
<term>Récepteurs viraux (métabolisme)</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Techniques de coculture</term>
<term>Virulence</term>
<term>Virus de l'hépatite murine (pathogénicité)</term>
<term>Virus de l'hépatite murine (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Hepatitis Antibodies</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps de l'hépatite</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Microglia</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Microglie</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Microglie</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Microglia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Astrocytes</term>
<term>Coculture Techniques</term>
<term>Mice</term>
<term>Mutation</term>
<term>Neurons</term>
<term>Oligodendroglia</term>
<term>Virulence</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Astrocytes</term>
<term>Mutation</term>
<term>Neurones</term>
<term>Oligodendroglie</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Techniques de coculture</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15857995</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>79</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2005</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures.</ArticleTitle>
<Pagination>
<MedlinePgn>6102-10</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nakagaki</LastName>
<ForeName>Keiko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Lab. of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011 Japan. ftaguchi@nih.go.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakagaki</LastName>
<ForeName>Kazuhide</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Taguchi</LastName>
<ForeName>Fumihiro</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006508">Hepatitis Antibodies</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001253" MajorTopicYN="N">Astrocytes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018920" MajorTopicYN="N">Coculture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006508" MajorTopicYN="N">Hepatitis Antibodies</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017628" MajorTopicYN="N">Microglia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009836" MajorTopicYN="N">Oligodendroglia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15857995</ArticleId>
<ArticleId IdType="pii">79/10/6102</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.79.10.6102-6110.2005</ArticleId>
<ArticleId IdType="pmc">PMC1091713</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Pathog. 1987 Oct;3(4):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2849022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(14):7828-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 1990 Nov;38(11):1683-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2212623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Dec;65(12):6881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Nov;191(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Dec;66(12):6931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1279194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Jan;67(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8380065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1716-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8383324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anat. 1992 Dec;181 ( Pt 3):423-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1304580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1993 Jul;74 ( Pt 7):1421-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):5403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7520090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Feb;69(2):633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7815526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Feb;69(2):684-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7815531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1980 Jul;29(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6156913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuropathol Exp Neurol. 1983 Jan;42(1):16-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6822843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Dec 20-1985 Jan 2;312(5996):763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 May;54(2):429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 1987 Aug;3(2):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2849019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Invest. 1995 Nov;73(5):615-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7474935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Apr;70(4):2632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8642698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Sep 1;223(1):68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9024-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 1997 Dec;3(6):428-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1999 Feb 1;162(3):1641-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1999;144(10):2041-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Oct 29;99(3):243-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10555140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 24;406(6798):893-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Jan 20;279(2):371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1999 Nov 1;252(2):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11501563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2001 Sep 1;98(5):1469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11520797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2001;146(9):1643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11699952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;494:237-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):11819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(1):216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Aug;64(8):3817-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164599</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Nakagaki, Kazuhide" sort="Nakagaki, Kazuhide" uniqKey="Nakagaki K" first="Kazuhide" last="Nakagaki">Kazuhide Nakagaki</name>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Nakagaki, Keiko" sort="Nakagaki, Keiko" uniqKey="Nakagaki K" first="Keiko" last="Nakagaki">Keiko Nakagaki</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002542 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002542 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15857995
   |texte=   Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15857995" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021