Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural analysis of inhibition mechanisms of aurintricarboxylic acid on SARS-CoV polymerase and other proteins.

Identifieur interne : 002467 ( PubMed/Checkpoint ); précédent : 002466; suivant : 002468

Structural analysis of inhibition mechanisms of aurintricarboxylic acid on SARS-CoV polymerase and other proteins.

Auteurs : Yeeleng Yap [France] ; Xuewu Zhang ; Anton Andonov ; Runtao He

Source :

RBID : pubmed:15979041

Descripteurs français

English descriptors

Abstract

We recently published experimental results that indicated Aurintricarboxylic Acid (ATA) could selectively inhibit SARS-CoV replication inside host cells by greater than 1000 times. This inhibition suggested that ATA could be developed as potent anti-viral drug. Here, to extend our experimental observation, we have incorporated protein structural studies (with positive/negative controls) to investigate the potential binding modes/sites of ATA onto RNA-dependent RNA polymerase (RdRp) from SARS-CoV and other pathogenic positive-strand RNA-viruses, as well as other proteins in SARS-CoV based on the fact that ATA binds to Ca2+-activated neutral protease (m-calpain), the protein tyrosine phosphatase (PTP) and HIV integrase which have existing crystal structures. Eight regions with homologous 3D-conformation were derived for 10 proteins of interest. One of the region, Rbinding (754-766 in SARS-CoV's RdRp), located in the palm sub-domain mainly constituted of anti-parallel beta-strand-turn-beta-strand hairpin structures that covers two of the three RdRp catalytic sites (Asp 760, Asp761), was also predicted by molecular docking method (based on free energy of binding DeltaG) to be important binding motif recognized by ATA. The existence of this strictly conserved region that incorporated catalytic residues, coupled with the homologous ATA binding pockets and their consistent DeltaG values, suggested strongly ATA may be involved in an analogous inhibition mechanism of SARS-COV's RdRp in concomitant to the case in m-calpain, PTP and HIV integrase.

DOI: 10.1016/j.compbiolchem.2005.04.006
PubMed: 15979041


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15979041

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural analysis of inhibition mechanisms of aurintricarboxylic acid on SARS-CoV polymerase and other proteins.</title>
<author>
<name sortKey="Yap, Yeeleng" sort="Yap, Yeeleng" uniqKey="Yap Y" first="Yeeleng" last="Yap">Yeeleng Yap</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute Pasteur, Unité de Génétique des Génomes Bactériens, CNRS URA 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute Pasteur, Unité de Génétique des Génomes Bactériens, CNRS URA 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xuewu" sort="Zhang, Xuewu" uniqKey="Zhang X" first="Xuewu" last="Zhang">Xuewu Zhang</name>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
</author>
<author>
<name sortKey="He, Runtao" sort="He, Runtao" uniqKey="He R" first="Runtao" last="He">Runtao He</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15979041</idno>
<idno type="pmid">15979041</idno>
<idno type="doi">10.1016/j.compbiolchem.2005.04.006</idno>
<idno type="wicri:Area/PubMed/Corpus">002671</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002671</idno>
<idno type="wicri:Area/PubMed/Curation">002671</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002671</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002467</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002467</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural analysis of inhibition mechanisms of aurintricarboxylic acid on SARS-CoV polymerase and other proteins.</title>
<author>
<name sortKey="Yap, Yeeleng" sort="Yap, Yeeleng" uniqKey="Yap Y" first="Yeeleng" last="Yap">Yeeleng Yap</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute Pasteur, Unité de Génétique des Génomes Bactériens, CNRS URA 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute Pasteur, Unité de Génétique des Génomes Bactériens, CNRS URA 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xuewu" sort="Zhang, Xuewu" uniqKey="Zhang X" first="Xuewu" last="Zhang">Xuewu Zhang</name>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
</author>
<author>
<name sortKey="He, Runtao" sort="He, Runtao" uniqKey="He R" first="Runtao" last="He">Runtao He</name>
</author>
</analytic>
<series>
<title level="j">Computational biology and chemistry</title>
<idno type="ISSN">1476-9271</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Aurintricarboxylic Acid (pharmacology)</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>RNA Replicase (antagonists & inhibitors)</term>
<term>SARS Virus (drug effects)</term>
<term>SARS Virus (metabolism)</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide aurintricarboxylique (pharmacologie)</term>
<term>Alignement de séquences</term>
<term>Antiviraux (pharmacologie)</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Protéines virales (métabolisme)</term>
<term>RNA replicase (antagonistes et inhibiteurs)</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>RNA Replicase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Aurintricarboxylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>RNA replicase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines virales</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide aurintricarboxylique</term>
<term>Antiviraux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We recently published experimental results that indicated Aurintricarboxylic Acid (ATA) could selectively inhibit SARS-CoV replication inside host cells by greater than 1000 times. This inhibition suggested that ATA could be developed as potent anti-viral drug. Here, to extend our experimental observation, we have incorporated protein structural studies (with positive/negative controls) to investigate the potential binding modes/sites of ATA onto RNA-dependent RNA polymerase (RdRp) from SARS-CoV and other pathogenic positive-strand RNA-viruses, as well as other proteins in SARS-CoV based on the fact that ATA binds to Ca2+-activated neutral protease (m-calpain), the protein tyrosine phosphatase (PTP) and HIV integrase which have existing crystal structures. Eight regions with homologous 3D-conformation were derived for 10 proteins of interest. One of the region, Rbinding (754-766 in SARS-CoV's RdRp), located in the palm sub-domain mainly constituted of anti-parallel beta-strand-turn-beta-strand hairpin structures that covers two of the three RdRp catalytic sites (Asp 760, Asp761), was also predicted by molecular docking method (based on free energy of binding DeltaG) to be important binding motif recognized by ATA. The existence of this strictly conserved region that incorporated catalytic residues, coupled with the homologous ATA binding pockets and their consistent DeltaG values, suggested strongly ATA may be involved in an analogous inhibition mechanism of SARS-COV's RdRp in concomitant to the case in m-calpain, PTP and HIV integrase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15979041</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>08</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1476-9271</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>29</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Computational biology and chemistry</Title>
<ISOAbbreviation>Comput Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural analysis of inhibition mechanisms of aurintricarboxylic acid on SARS-CoV polymerase and other proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>212-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We recently published experimental results that indicated Aurintricarboxylic Acid (ATA) could selectively inhibit SARS-CoV replication inside host cells by greater than 1000 times. This inhibition suggested that ATA could be developed as potent anti-viral drug. Here, to extend our experimental observation, we have incorporated protein structural studies (with positive/negative controls) to investigate the potential binding modes/sites of ATA onto RNA-dependent RNA polymerase (RdRp) from SARS-CoV and other pathogenic positive-strand RNA-viruses, as well as other proteins in SARS-CoV based on the fact that ATA binds to Ca2+-activated neutral protease (m-calpain), the protein tyrosine phosphatase (PTP) and HIV integrase which have existing crystal structures. Eight regions with homologous 3D-conformation were derived for 10 proteins of interest. One of the region, Rbinding (754-766 in SARS-CoV's RdRp), located in the palm sub-domain mainly constituted of anti-parallel beta-strand-turn-beta-strand hairpin structures that covers two of the three RdRp catalytic sites (Asp 760, Asp761), was also predicted by molecular docking method (based on free energy of binding DeltaG) to be important binding motif recognized by ATA. The existence of this strictly conserved region that incorporated catalytic residues, coupled with the homologous ATA binding pockets and their consistent DeltaG values, suggested strongly ATA may be involved in an analogous inhibition mechanism of SARS-COV's RdRp in concomitant to the case in m-calpain, PTP and HIV integrase.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yap</LastName>
<ForeName>YeeLeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute Pasteur, Unité de Génétique des Génomes Bactériens, CNRS URA 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>XueWu</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Andonov</LastName>
<ForeName>Anton</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>RunTao</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Comput Biol Chem</MedlineTA>
<NlmUniqueID>101157394</NlmUniqueID>
<ISSNLinking>1476-9271</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4431-00-9</RegistryNumber>
<NameOfSubstance UI="D001312">Aurintricarboxylic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001312" MajorTopicYN="N">Aurintricarboxylic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>12</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15979041</ArticleId>
<ArticleId IdType="pii">S1476-9271(05)00039-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.compbiolchem.2005.04.006</ArticleId>
<ArticleId IdType="pmc">PMC7106521</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem. 2004 May 1;12(9):2219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15080921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Oct 24;278(43):41734-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12888560</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):33392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12810712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Pharm Bull (Tokyo). 2004 May;52(5):643-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Aug 6;320(4):1199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15249217</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Apr;76(7):3482-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884572</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824330</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem Lett. 2004 Jun 21;14(12):3257-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15149686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Oct 10;310(1):78-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14511651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1996 Dec;8(4):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008363</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 Dec 15;31(24):7117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14654687</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 25;43(20):6059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Int Physiol Biochim. 1979 Oct;87(4):842-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">93938</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 May 29;185(1):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1599491</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Aug 15;308(1):148-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1976 Feb;3(2):405-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">56743</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1991 Jan;10(1):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1989886</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem. 2004 May 15;12(10):2517-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15110833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>AIDS Treat News. 2003 Apr 4;(390):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12739474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):588-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3792-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1998 Nov 27;282(5394):1669-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9831551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Med Sci Monit. 2003 Jun;9(6):SR29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Int Physiol Biochim. 1978 Oct;86(4):925-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">84625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 2000 Sep;25(9):453-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973060</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Aug;60(Pt 8):1355-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272157</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10012-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2002 Jan;83(Pt 1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752695</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Graph. 1990 Mar;8(1):52-6, 29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2268628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1990 Mar 20;212(2):403-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2181150</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Antimicrob Chemother. 2004 Jul;54(1):14-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190019</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Feb 13;303(5660):944-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963300</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Oct 11;277(41):38322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167642</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biochem. 1977 Jan;81(1):135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">845132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 1998 Sep;11(9):739-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9796821</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Mol Biol Int. 1995 Jun;36(2):291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7663433</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>CMAJ. 2003 May 13;168(10):1289-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12743076</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
<name sortKey="He, Runtao" sort="He, Runtao" uniqKey="He R" first="Runtao" last="He">Runtao He</name>
<name sortKey="Zhang, Xuewu" sort="Zhang, Xuewu" uniqKey="Zhang X" first="Xuewu" last="Zhang">Xuewu Zhang</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Yap, Yeeleng" sort="Yap, Yeeleng" uniqKey="Yap Y" first="Yeeleng" last="Yap">Yeeleng Yap</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002467 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002467 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15979041
   |texte=   Structural analysis of inhibition mechanisms of aurintricarboxylic acid on SARS-CoV polymerase and other proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15979041" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021