Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens.

Identifieur interne : 002024 ( PubMed/Checkpoint ); précédent : 002023; suivant : 002025

SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens.

Auteurs : Vandana Gupta [Singapour] ; Tani M. Tabiin ; Kai Sun ; Ananth Chandrasekaran ; Azlinda Anwar ; Kun Yang ; Priya Chikhlikar ; Jerome Salmon ; Vladimir Brusic ; Ernesto T A. Marques ; Srinivasan N. Kellathur ; Thomas J. August

Source :

RBID : pubmed:16387339

Descripteurs français

English descriptors

Abstract

Correspondence between the T-cell epitope responses of vaccine immunogens and those of pathogen antigens is critical to vaccine efficacy. In the present study, we analyzed the spectrum of immune responses of mice to three different forms of the SARS coronavirus nucleocapsid (N): (1) exogenous recombinant protein (N-GST) with Freund's adjuvant; (2) DNA encoding unmodified N as an endogenous cytoplasmic protein (pN); and (3) DNA encoding N as a LAMP-1 chimera targeted to the lysosomal MHC II compartment (p-LAMP-N). Lysosomal trafficking of the LAMP/N chimera in transfected cells was documented by both confocal and immunoelectron microscopy. The responses of the immunized mice differed markedly. The strongest T-cell IFN-gamma and CTL responses were to the LAMP-N chimera followed by the pN immunogen. In contrast, N-GST elicited strong T cell IL-4 but minimal IFN-gamma responses and a much greater antibody response. Despite these differences, however, the immunodominant T-cell ELISpot responses to each of the three immunogens were elicited by the same N peptides, with the greatest responses being generated by a cluster of five overlapping peptides, N76-114, each of which contained nonameric H2d binding domains with high binding scores for both class I and, except for N76-93, class II alleles. These results demonstrate that processing and presentation of N, whether exogenously or endogenously derived, resulted in common immunodominant epitopes, supporting the usefulness of modified antigen delivery and trafficking forms and, in particular, LAMP chimeras as vaccine candidates. Nevertheless, the profiles of T-cell responses were distinctly different. The pronounced Th-2 and humoral response to N protein plus adjuvant are in contrast to the balanced IFN-gamma and IL-4 responses and strong memory CTL responses to the LAMP-N chimera.

DOI: 10.1016/j.virol.2005.11.042
PubMed: 16387339


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16387339

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens.</title>
<author>
<name sortKey="Gupta, Vandana" sort="Gupta, Vandana" uniqKey="Gupta V" first="Vandana" last="Gupta">Vandana Gupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669</wicri:regionArea>
<wicri:noRegion>Singapore 138669</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tabiin, Tani M" sort="Tabiin, Tani M" uniqKey="Tabiin T" first="Tani M" last="Tabiin">Tani M. Tabiin</name>
</author>
<author>
<name sortKey="Sun, Kai" sort="Sun, Kai" uniqKey="Sun K" first="Kai" last="Sun">Kai Sun</name>
</author>
<author>
<name sortKey="Chandrasekaran, Ananth" sort="Chandrasekaran, Ananth" uniqKey="Chandrasekaran A" first="Ananth" last="Chandrasekaran">Ananth Chandrasekaran</name>
</author>
<author>
<name sortKey="Anwar, Azlinda" sort="Anwar, Azlinda" uniqKey="Anwar A" first="Azlinda" last="Anwar">Azlinda Anwar</name>
</author>
<author>
<name sortKey="Yang, Kun" sort="Yang, Kun" uniqKey="Yang K" first="Kun" last="Yang">Kun Yang</name>
</author>
<author>
<name sortKey="Chikhlikar, Priya" sort="Chikhlikar, Priya" uniqKey="Chikhlikar P" first="Priya" last="Chikhlikar">Priya Chikhlikar</name>
</author>
<author>
<name sortKey="Salmon, Jerome" sort="Salmon, Jerome" uniqKey="Salmon J" first="Jerome" last="Salmon">Jerome Salmon</name>
</author>
<author>
<name sortKey="Brusic, Vladimir" sort="Brusic, Vladimir" uniqKey="Brusic V" first="Vladimir" last="Brusic">Vladimir Brusic</name>
</author>
<author>
<name sortKey="Marques, Ernesto T A" sort="Marques, Ernesto T A" uniqKey="Marques E" first="Ernesto T A" last="Marques">Ernesto T A. Marques</name>
</author>
<author>
<name sortKey="Kellathur, Srinivasan N" sort="Kellathur, Srinivasan N" uniqKey="Kellathur S" first="Srinivasan N" last="Kellathur">Srinivasan N. Kellathur</name>
</author>
<author>
<name sortKey="August, Thomas J" sort="August, Thomas J" uniqKey="August T" first="Thomas J" last="August">Thomas J. August</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16387339</idno>
<idno type="pmid">16387339</idno>
<idno type="doi">10.1016/j.virol.2005.11.042</idno>
<idno type="wicri:Area/PubMed/Corpus">002391</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002391</idno>
<idno type="wicri:Area/PubMed/Curation">002391</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002391</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002024</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002024</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens.</title>
<author>
<name sortKey="Gupta, Vandana" sort="Gupta, Vandana" uniqKey="Gupta V" first="Vandana" last="Gupta">Vandana Gupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669</wicri:regionArea>
<wicri:noRegion>Singapore 138669</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tabiin, Tani M" sort="Tabiin, Tani M" uniqKey="Tabiin T" first="Tani M" last="Tabiin">Tani M. Tabiin</name>
</author>
<author>
<name sortKey="Sun, Kai" sort="Sun, Kai" uniqKey="Sun K" first="Kai" last="Sun">Kai Sun</name>
</author>
<author>
<name sortKey="Chandrasekaran, Ananth" sort="Chandrasekaran, Ananth" uniqKey="Chandrasekaran A" first="Ananth" last="Chandrasekaran">Ananth Chandrasekaran</name>
</author>
<author>
<name sortKey="Anwar, Azlinda" sort="Anwar, Azlinda" uniqKey="Anwar A" first="Azlinda" last="Anwar">Azlinda Anwar</name>
</author>
<author>
<name sortKey="Yang, Kun" sort="Yang, Kun" uniqKey="Yang K" first="Kun" last="Yang">Kun Yang</name>
</author>
<author>
<name sortKey="Chikhlikar, Priya" sort="Chikhlikar, Priya" uniqKey="Chikhlikar P" first="Priya" last="Chikhlikar">Priya Chikhlikar</name>
</author>
<author>
<name sortKey="Salmon, Jerome" sort="Salmon, Jerome" uniqKey="Salmon J" first="Jerome" last="Salmon">Jerome Salmon</name>
</author>
<author>
<name sortKey="Brusic, Vladimir" sort="Brusic, Vladimir" uniqKey="Brusic V" first="Vladimir" last="Brusic">Vladimir Brusic</name>
</author>
<author>
<name sortKey="Marques, Ernesto T A" sort="Marques, Ernesto T A" uniqKey="Marques E" first="Ernesto T A" last="Marques">Ernesto T A. Marques</name>
</author>
<author>
<name sortKey="Kellathur, Srinivasan N" sort="Kellathur, Srinivasan N" uniqKey="Kellathur S" first="Srinivasan N" last="Kellathur">Srinivasan N. Kellathur</name>
</author>
<author>
<name sortKey="August, Thomas J" sort="August, Thomas J" uniqKey="August T" first="Thomas J" last="August">Thomas J. August</name>
</author>
</analytic>
<series>
<title level="j">Virology</title>
<idno type="ISSN">0042-6822</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Antigen Presentation</term>
<term>Antigens, Viral (genetics)</term>
<term>Base Sequence</term>
<term>COS Cells</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>DNA, Viral (genetics)</term>
<term>Immunodominant Epitopes (genetics)</term>
<term>Mice</term>
<term>Microscopy, Immunoelectron</term>
<term>Molecular Sequence Data</term>
<term>Nucleocapsid Proteins (genetics)</term>
<term>Nucleocapsid Proteins (immunology)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (immunology)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (immunology)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (immunology)</term>
<term>Spodoptera</term>
<term>T-Lymphocytes (immunology)</term>
<term>Transfection</term>
<term>Viral Vaccines (genetics)</term>
<term>Viral Vaccines (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN viral (génétique)</term>
<term>Animaux</term>
<term>Antigènes viraux (génétique)</term>
<term>Cellules COS</term>
<term>Données de séquences moléculaires</term>
<term>Lignée cellulaire</term>
<term>Lymphocytes T (immunologie)</term>
<term>Microscopie immunoélectronique</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (immunologie)</term>
<term>Protéines nucléocapside (génétique)</term>
<term>Protéines nucléocapside (immunologie)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (immunologie)</term>
<term>Présentation d'antigène</term>
<term>Souris</term>
<term>Spodoptera</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Transfection</term>
<term>Vaccins antiviraux (génétique)</term>
<term>Vaccins antiviraux (immunologie)</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (immunologie)</term>
<term>Épitopes immunodominants (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Antigens, Viral</term>
<term>DNA, Viral</term>
<term>Immunodominant Epitopes</term>
<term>Nucleocapsid Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Recombinant Proteins</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Nucleocapsid Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Recombinant Proteins</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN viral</term>
<term>Antigènes viraux</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines nucléocapside</term>
<term>Protéines recombinantes</term>
<term>Vaccins antiviraux</term>
<term>Virus du SRAS</term>
<term>Épitopes immunodominants</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Lymphocytes T</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines nucléocapside</term>
<term>Protéines recombinantes</term>
<term>Vaccins antiviraux</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Antigen Presentation</term>
<term>Base Sequence</term>
<term>COS Cells</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Mice</term>
<term>Microscopy, Immunoelectron</term>
<term>Molecular Sequence Data</term>
<term>Spodoptera</term>
<term>Transfection</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules COS</term>
<term>Données de séquences moléculaires</term>
<term>Lignée cellulaire</term>
<term>Microscopie immunoélectronique</term>
<term>Présentation d'antigène</term>
<term>Souris</term>
<term>Spodoptera</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Correspondence between the T-cell epitope responses of vaccine immunogens and those of pathogen antigens is critical to vaccine efficacy. In the present study, we analyzed the spectrum of immune responses of mice to three different forms of the SARS coronavirus nucleocapsid (N): (1) exogenous recombinant protein (N-GST) with Freund's adjuvant; (2) DNA encoding unmodified N as an endogenous cytoplasmic protein (pN); and (3) DNA encoding N as a LAMP-1 chimera targeted to the lysosomal MHC II compartment (p-LAMP-N). Lysosomal trafficking of the LAMP/N chimera in transfected cells was documented by both confocal and immunoelectron microscopy. The responses of the immunized mice differed markedly. The strongest T-cell IFN-gamma and CTL responses were to the LAMP-N chimera followed by the pN immunogen. In contrast, N-GST elicited strong T cell IL-4 but minimal IFN-gamma responses and a much greater antibody response. Despite these differences, however, the immunodominant T-cell ELISpot responses to each of the three immunogens were elicited by the same N peptides, with the greatest responses being generated by a cluster of five overlapping peptides, N76-114, each of which contained nonameric H2d binding domains with high binding scores for both class I and, except for N76-93, class II alleles. These results demonstrate that processing and presentation of N, whether exogenously or endogenously derived, resulted in common immunodominant epitopes, supporting the usefulness of modified antigen delivery and trafficking forms and, in particular, LAMP chimeras as vaccine candidates. Nevertheless, the profiles of T-cell responses were distinctly different. The pronounced Th-2 and humoral response to N protein plus adjuvant are in contrast to the balanced IFN-gamma and IL-4 responses and strong memory CTL responses to the LAMP-N chimera.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16387339</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0042-6822</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>347</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Mar</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Virology</Title>
<ISOAbbreviation>Virology</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens.</ArticleTitle>
<Pagination>
<MedlinePgn>127-39</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Correspondence between the T-cell epitope responses of vaccine immunogens and those of pathogen antigens is critical to vaccine efficacy. In the present study, we analyzed the spectrum of immune responses of mice to three different forms of the SARS coronavirus nucleocapsid (N): (1) exogenous recombinant protein (N-GST) with Freund's adjuvant; (2) DNA encoding unmodified N as an endogenous cytoplasmic protein (pN); and (3) DNA encoding N as a LAMP-1 chimera targeted to the lysosomal MHC II compartment (p-LAMP-N). Lysosomal trafficking of the LAMP/N chimera in transfected cells was documented by both confocal and immunoelectron microscopy. The responses of the immunized mice differed markedly. The strongest T-cell IFN-gamma and CTL responses were to the LAMP-N chimera followed by the pN immunogen. In contrast, N-GST elicited strong T cell IL-4 but minimal IFN-gamma responses and a much greater antibody response. Despite these differences, however, the immunodominant T-cell ELISpot responses to each of the three immunogens were elicited by the same N peptides, with the greatest responses being generated by a cluster of five overlapping peptides, N76-114, each of which contained nonameric H2d binding domains with high binding scores for both class I and, except for N76-93, class II alleles. These results demonstrate that processing and presentation of N, whether exogenously or endogenously derived, resulted in common immunodominant epitopes, supporting the usefulness of modified antigen delivery and trafficking forms and, in particular, LAMP chimeras as vaccine candidates. Nevertheless, the profiles of T-cell responses were distinctly different. The pronounced Th-2 and humoral response to N protein plus adjuvant are in contrast to the balanced IFN-gamma and IL-4 responses and strong memory CTL responses to the LAMP-N chimera.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gupta</LastName>
<ForeName>Vandana</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tabiin</LastName>
<ForeName>Tani M</ForeName>
<Initials>TM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chandrasekaran</LastName>
<ForeName>Ananth</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anwar</LastName>
<ForeName>Azlinda</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Kun</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chikhlikar</LastName>
<ForeName>Priya</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salmon</LastName>
<ForeName>Jerome</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brusic</LastName>
<ForeName>Vladimir</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marques</LastName>
<ForeName>Ernesto T A</ForeName>
<Initials>ET</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kellathur</LastName>
<ForeName>Srinivasan N</ForeName>
<Initials>SN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>August</LastName>
<ForeName>Thomas J</ForeName>
<Initials>TJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Virology</MedlineTA>
<NlmUniqueID>0110674</NlmUniqueID>
<ISSNLinking>0042-6822</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000956">Antigens, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016056">Immunodominant Epitopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019590">Nucleocapsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099602">nucleocapsid protein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017951" MajorTopicYN="N">Antigen Presentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000956" MajorTopicYN="N">Antigens, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019556" MajorTopicYN="N">COS Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016056" MajorTopicYN="N">Immunodominant Epitopes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016253" MajorTopicYN="N">Microscopy, Immunoelectron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019590" MajorTopicYN="N">Nucleocapsid Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018411" MajorTopicYN="N">Spodoptera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2005</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16387339</ArticleId>
<ArticleId IdType="pii">S0042-6822(05)00783-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.virol.2005.11.042</ArticleId>
<ArticleId IdType="pmc">PMC7111852</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2004 Jul;42(7):2884-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11287644</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2004 Aug 4;20 Suppl 1:i297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262812</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Feb 5;332(1):66-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Traffic. 2004 Dec;5(12):936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522096</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2003 Jun;13(3):141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12862314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2001 Apr 1;166(7):4355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11254689</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 25;43(20):6059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunology. 2004 Jul;112(3):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15196201</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2000 May 1;191(9):1513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Rev. 1999 Dec;172:109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3290-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1707537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Today. 1998 Jun;19(6):282-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9639994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Virol. 2004 Jul;73(3):338-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170626</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8070-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223316</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Sep 25;425(6956):402-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14508490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Immunol. 2001 Aug;13(4):429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498298</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2000 Dec 1;165(11):6487-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 1998 Apr;16(4):364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9555728</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1997 Mar 28;272(13):8671-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9079699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2004 Sep;5(9):927-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15300249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 1995 Sep 1;182(3):841-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7650490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14082-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943064</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2001 Nov 10;290(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11883007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Immunol. 2004 Feb;16(1):96-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14734116</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1997 Nov 3;139(3):639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9348281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2003 Oct 15;171(8):4140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Immunol. 2002 Oct;39(3-4):171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200049</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2003 Dec 15;171(12):6339-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14662830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Immunol. 1998 Dec;28(12):4149-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862351</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol Methods. 2003 Apr 1;275(1-2):19-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667667</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2004 Jul;5(7):678-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15224093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2004 Jul;5(7):661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15224091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Jan 5;331(1):128-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15582659</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2000 Apr 10;269(2):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753710</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Sep 26;278(39):37926-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1985 Jul;101(1):85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2409098</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1995 Aug 15;155(4):1818-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7636236</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1998 Dec 15;161(12):6532-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862678</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Immunol. 2004 Apr;16(2):217-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15023416</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Scand J Immunol. 2004 Jun;59(6):545-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15182249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 May;78(9):4638-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078946</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunology. 2004 May;112(1):126-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15129672</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1991 Nov 15;147(10):3306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1658143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1993 Jan 25;268(3):1941-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8420968</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int Immunol. 2002 Jun;14(6):605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039912</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524826</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Leukoc Biol. 2004 May;75(5):844-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14966190</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int Immunol. 2005 Jan;17(1):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546887</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Semin Immunol. 2004 Jun;16(3):197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130504</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cancer Res. 2002 Sep 1;62(17):5041-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12208759</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Lett. 1996 Aug;52(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8877415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Immunol. 2003 May;33(5):1250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12731050</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Rev. 1999 Dec;172:131-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631943</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Sep 25;425(6956):397-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14508489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Lett. 2004 Apr 15;92(3):237-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15081618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunology. 2000 Feb;99(2):163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692032</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1978 Jun;120(6):1809-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">77879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Jan 28;307(5709):593-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1999 Apr 1;162(7):3942-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10201913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Leukoc Biol. 2001 Dec;70(6):849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739546</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Exp Dermatol. 2002 Apr;11(2):126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11994139</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods. 1996 Oct;10(2):191-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812668</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Immunol. 2004;22:711-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2001 Apr 15;166(8):5250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290810</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2004 Mar 15;172(6):3447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004144</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2005 Jul;23(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16039577</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Immunol. 1998;16:323-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9597133</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 1991 Sep;88(3):876-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715888</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Immunol. 2001 Feb;13(1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154911</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2004 Jun 1;323(2):220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15193918</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2004 May 15;172(10):6129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15128799</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1999 Jan 1;162(1):568-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9886434</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2002 Nov 1;169(9):4951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2003 May 16;21(17-18):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Immunol. 2004 Jun;16(3):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134772</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2005 Mar;6(3):287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15711549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1995 Apr;69(4):2574-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7884908</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2002 Dec 16;196(12):1627-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12486105</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2005 Apr 18;201(8):1243-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837811</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol Methods. 2001 Sep 1;255(1-2):27-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11470284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Singapour</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Anwar, Azlinda" sort="Anwar, Azlinda" uniqKey="Anwar A" first="Azlinda" last="Anwar">Azlinda Anwar</name>
<name sortKey="August, Thomas J" sort="August, Thomas J" uniqKey="August T" first="Thomas J" last="August">Thomas J. August</name>
<name sortKey="Brusic, Vladimir" sort="Brusic, Vladimir" uniqKey="Brusic V" first="Vladimir" last="Brusic">Vladimir Brusic</name>
<name sortKey="Chandrasekaran, Ananth" sort="Chandrasekaran, Ananth" uniqKey="Chandrasekaran A" first="Ananth" last="Chandrasekaran">Ananth Chandrasekaran</name>
<name sortKey="Chikhlikar, Priya" sort="Chikhlikar, Priya" uniqKey="Chikhlikar P" first="Priya" last="Chikhlikar">Priya Chikhlikar</name>
<name sortKey="Kellathur, Srinivasan N" sort="Kellathur, Srinivasan N" uniqKey="Kellathur S" first="Srinivasan N" last="Kellathur">Srinivasan N. Kellathur</name>
<name sortKey="Marques, Ernesto T A" sort="Marques, Ernesto T A" uniqKey="Marques E" first="Ernesto T A" last="Marques">Ernesto T A. Marques</name>
<name sortKey="Salmon, Jerome" sort="Salmon, Jerome" uniqKey="Salmon J" first="Jerome" last="Salmon">Jerome Salmon</name>
<name sortKey="Sun, Kai" sort="Sun, Kai" uniqKey="Sun K" first="Kai" last="Sun">Kai Sun</name>
<name sortKey="Tabiin, Tani M" sort="Tabiin, Tani M" uniqKey="Tabiin T" first="Tani M" last="Tabiin">Tani M. Tabiin</name>
<name sortKey="Yang, Kun" sort="Yang, Kun" uniqKey="Yang K" first="Kun" last="Yang">Kun Yang</name>
</noCountry>
<country name="Singapour">
<noRegion>
<name sortKey="Gupta, Vandana" sort="Gupta, Vandana" uniqKey="Gupta V" first="Vandana" last="Gupta">Vandana Gupta</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:16387339
   |texte=   SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:16387339" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021