Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.

Identifieur interne : 001C99 ( PubMed/Checkpoint ); précédent : 001C98; suivant : 001D00

Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.

Auteurs : Matthew Frieman [États-Unis] ; Boyd Yount ; Mark Heise ; Sarah A. Kopecky-Bromberg ; Peter Palese ; Ralph S. Baric

Source :

RBID : pubmed:17596301

Descripteurs français

English descriptors

Abstract

The host innate immune response is an important deterrent of severe viral infection in humans and animals. Nuclear import factors function as key gatekeepers that regulate the transport of innate immune regulatory cargo to the nucleus of cells to activate the antiviral response. Using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model, we demonstrate that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of STAT1 transport into the nucleus in response to interferon signaling, thus blocking the expression of STAT1-activated genes that establish an antiviral state. We mapped the region of ORF6, which binds karyopherin alpha 2, to the C terminus of ORF6 and show that mutations in the C terminus no longer bind karyopherin alpha 2 or block the nuclear import of STAT1. We also show that N-terminal deletions of karyopherin alpha 2 that no longer bind to karyopherin beta 1 still retain ORF6 binding activity but no longer block STAT1 nuclear import. Recombinant SARS-CoV lacking ORF6 did not tether karyopherin alpha 2 to the ER/Golgi membrane and allowed the import of the STAT1 complex into the nucleus. We discuss the likely implications of these data on SARS-CoV replication and pathogenesis.

DOI: 10.1128/JVI.01012-07
PubMed: 17596301


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17596301

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.</title>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, 3304 Hooker Research Center, Chapel Hill, NC 27599-7435, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, 3304 Hooker Research Center, Chapel Hill, NC 27599-7435</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
</author>
<author>
<name sortKey="Heise, Mark" sort="Heise, Mark" uniqKey="Heise M" first="Mark" last="Heise">Mark Heise</name>
</author>
<author>
<name sortKey="Kopecky Bromberg, Sarah A" sort="Kopecky Bromberg, Sarah A" uniqKey="Kopecky Bromberg S" first="Sarah A" last="Kopecky-Bromberg">Sarah A. Kopecky-Bromberg</name>
</author>
<author>
<name sortKey="Palese, Peter" sort="Palese, Peter" uniqKey="Palese P" first="Peter" last="Palese">Peter Palese</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17596301</idno>
<idno type="pmid">17596301</idno>
<idno type="doi">10.1128/JVI.01012-07</idno>
<idno type="wicri:Area/PubMed/Corpus">001D79</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D79</idno>
<idno type="wicri:Area/PubMed/Curation">001D79</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001D79</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C99</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.</title>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, 3304 Hooker Research Center, Chapel Hill, NC 27599-7435, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, 3304 Hooker Research Center, Chapel Hill, NC 27599-7435</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
</author>
<author>
<name sortKey="Heise, Mark" sort="Heise, Mark" uniqKey="Heise M" first="Mark" last="Heise">Mark Heise</name>
</author>
<author>
<name sortKey="Kopecky Bromberg, Sarah A" sort="Kopecky Bromberg, Sarah A" uniqKey="Kopecky Bromberg S" first="Sarah A" last="Kopecky-Bromberg">Sarah A. Kopecky-Bromberg</name>
</author>
<author>
<name sortKey="Palese, Peter" sort="Palese, Peter" uniqKey="Palese P" first="Peter" last="Palese">Peter Palese</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active Transport, Cell Nucleus (physiology)</term>
<term>Animals</term>
<term>Caco-2 Cells</term>
<term>Cell Nucleus (genetics)</term>
<term>Cell Nucleus (immunology)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Chlorocebus aethiops</term>
<term>Endoplasmic Reticulum (genetics)</term>
<term>Endoplasmic Reticulum (immunology)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Gene Expression Regulation (genetics)</term>
<term>Gene Expression Regulation (immunology)</term>
<term>Golgi Apparatus (genetics)</term>
<term>Golgi Apparatus (immunology)</term>
<term>Golgi Apparatus (metabolism)</term>
<term>Humans</term>
<term>Immunity, Innate (genetics)</term>
<term>Interferons (immunology)</term>
<term>Interferons (metabolism)</term>
<term>Mutation</term>
<term>Open Reading Frames (physiology)</term>
<term>Protein Structure, Tertiary (genetics)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (immunology)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (metabolism)</term>
<term>STAT1 Transcription Factor (genetics)</term>
<term>STAT1 Transcription Factor (immunology)</term>
<term>STAT1 Transcription Factor (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (immunology)</term>
<term>Vero Cells</term>
<term>Virus Replication (physiology)</term>
<term>alpha Karyopherins (genetics)</term>
<term>alpha Karyopherins (immunology)</term>
<term>alpha Karyopherins (metabolism)</term>
<term>beta Karyopherins (genetics)</term>
<term>beta Karyopherins (immunology)</term>
<term>beta Karyopherins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Appareil de Golgi (génétique)</term>
<term>Appareil de Golgi (immunologie)</term>
<term>Appareil de Golgi (métabolisme)</term>
<term>Cadres ouverts de lecture (physiologie)</term>
<term>Cariophérines alpha (génétique)</term>
<term>Cariophérines alpha (immunologie)</term>
<term>Cariophérines alpha (métabolisme)</term>
<term>Caryophérines bêta (génétique)</term>
<term>Caryophérines bêta (immunologie)</term>
<term>Caryophérines bêta (métabolisme)</term>
<term>Cellules Caco-2</term>
<term>Cellules Vero</term>
<term>Facteur de transcription STAT-1 (génétique)</term>
<term>Facteur de transcription STAT-1 (immunologie)</term>
<term>Facteur de transcription STAT-1 (métabolisme)</term>
<term>Humains</term>
<term>Immunité innée (génétique)</term>
<term>Interférons (immunologie)</term>
<term>Interférons (métabolisme)</term>
<term>Mutation</term>
<term>Noyau de la cellule (génétique)</term>
<term>Noyau de la cellule (immunologie)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (immunologie)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Régulation de l'expression des gènes (génétique)</term>
<term>Régulation de l'expression des gènes (immunologie)</term>
<term>Réplication virale (physiologie)</term>
<term>Réticulum endoplasmique (génétique)</term>
<term>Réticulum endoplasmique (immunologie)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Structure tertiaire des protéines (génétique)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (immunologie)</term>
<term>Transport nucléaire actif (physiologie)</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (immunologie)</term>
<term>Virus du SRAS (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Recombinant Proteins</term>
<term>STAT1 Transcription Factor</term>
<term>alpha Karyopherins</term>
<term>beta Karyopherins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Interferons</term>
<term>Recombinant Proteins</term>
<term>STAT1 Transcription Factor</term>
<term>alpha Karyopherins</term>
<term>beta Karyopherins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Endoplasmic Reticulum</term>
<term>Gene Expression Regulation</term>
<term>Golgi Apparatus</term>
<term>Immunity, Innate</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Cariophérines alpha</term>
<term>Caryophérines bêta</term>
<term>Facteur de transcription STAT-1</term>
<term>Immunité innée</term>
<term>Noyau de la cellule</term>
<term>Protéines recombinantes</term>
<term>Régulation de l'expression des gènes</term>
<term>Réticulum endoplasmique</term>
<term>Structure tertiaire des protéines</term>
<term>Transduction du signal</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Cariophérines alpha</term>
<term>Caryophérines bêta</term>
<term>Facteur de transcription STAT-1</term>
<term>Interférons</term>
<term>Noyau de la cellule</term>
<term>Protéines recombinantes</term>
<term>Régulation de l'expression des gènes</term>
<term>Réticulum endoplasmique</term>
<term>Transduction du signal</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Cell Nucleus</term>
<term>Endoplasmic Reticulum</term>
<term>Gene Expression Regulation</term>
<term>Golgi Apparatus</term>
<term>SARS Virus</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Endoplasmic Reticulum</term>
<term>Golgi Apparatus</term>
<term>Interferons</term>
<term>Recombinant Proteins</term>
<term>SARS Virus</term>
<term>STAT1 Transcription Factor</term>
<term>alpha Karyopherins</term>
<term>beta Karyopherins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Cariophérines alpha</term>
<term>Caryophérines bêta</term>
<term>Facteur de transcription STAT-1</term>
<term>Interférons</term>
<term>Noyau de la cellule</term>
<term>Protéines recombinantes</term>
<term>Réticulum endoplasmique</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Réplication virale</term>
<term>Transport nucléaire actif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Open Reading Frames</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Caco-2 Cells</term>
<term>Chlorocebus aethiops</term>
<term>Humans</term>
<term>Mutation</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Caco-2</term>
<term>Cellules Vero</term>
<term>Humains</term>
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The host innate immune response is an important deterrent of severe viral infection in humans and animals. Nuclear import factors function as key gatekeepers that regulate the transport of innate immune regulatory cargo to the nucleus of cells to activate the antiviral response. Using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model, we demonstrate that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of STAT1 transport into the nucleus in response to interferon signaling, thus blocking the expression of STAT1-activated genes that establish an antiviral state. We mapped the region of ORF6, which binds karyopherin alpha 2, to the C terminus of ORF6 and show that mutations in the C terminus no longer bind karyopherin alpha 2 or block the nuclear import of STAT1. We also show that N-terminal deletions of karyopherin alpha 2 that no longer bind to karyopherin beta 1 still retain ORF6 binding activity but no longer block STAT1 nuclear import. Recombinant SARS-CoV lacking ORF6 did not tether karyopherin alpha 2 to the ER/Golgi membrane and allowed the import of the STAT1 complex into the nucleus. We discuss the likely implications of these data on SARS-CoV replication and pathogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17596301</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>81</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2007</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.</ArticleTitle>
<Pagination>
<MedlinePgn>9812-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The host innate immune response is an important deterrent of severe viral infection in humans and animals. Nuclear import factors function as key gatekeepers that regulate the transport of innate immune regulatory cargo to the nucleus of cells to activate the antiviral response. Using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model, we demonstrate that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of STAT1 transport into the nucleus in response to interferon signaling, thus blocking the expression of STAT1-activated genes that establish an antiviral state. We mapped the region of ORF6, which binds karyopherin alpha 2, to the C terminus of ORF6 and show that mutations in the C terminus no longer bind karyopherin alpha 2 or block the nuclear import of STAT1. We also show that N-terminal deletions of karyopherin alpha 2 that no longer bind to karyopherin beta 1 still retain ORF6 binding activity but no longer block STAT1 nuclear import. Recombinant SARS-CoV lacking ORF6 did not tether karyopherin alpha 2 to the ER/Golgi membrane and allowed the import of the STAT1 complex into the nucleus. We discuss the likely implications of these data on SARS-CoV replication and pathogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Frieman</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, 3304 Hooker Research Center, Chapel Hill, NC 27599-7435, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yount</LastName>
<ForeName>Boyd</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heise</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kopecky-Bromberg</LastName>
<ForeName>Sarah A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Palese</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F32 AI066542</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F32 AI 066542</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI 059443-02</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490630">KPNA2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C424166">KPNB1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050794">STAT1 Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494079">STAT1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028901">alpha Karyopherins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028961">beta Karyopherins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9008-11-1</RegistryNumber>
<NameOfSubstance UI="D007372">Interferons</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018938" MajorTopicYN="N">Caco-2 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007372" MajorTopicYN="N">Interferons</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050794" MajorTopicYN="N">STAT1 Transcription Factor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028901" MajorTopicYN="N">alpha Karyopherins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028961" MajorTopicYN="N">beta Karyopherins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17596301</ArticleId>
<ArticleId IdType="pii">JVI.01012-07</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01012-07</ArticleId>
<ArticleId IdType="pmc">PMC2045396</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1997 Feb 14;272(7):4310-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 May 10;283(2):230-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11336548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1998 Jun;10(3):392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9640541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 May 20;399(6733):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2079-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2992-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15710891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Apr 29;330(1):286-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 3;102(18):6350-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(17):11335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 20;437(7062):1167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Dec;11(6):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Apr 2;21(7):1754-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Apr 25;296(1):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jun 7;294(2):354-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(22):11476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Jan 10;300(2):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Jun 4;289(21):2801-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12734147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2003 Aug 12;2003(195):RE13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):176-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Sep 15;173(6):4030-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11416-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rech Vet. 1983;14(4):507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6203463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1985 Nov;147(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2998070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 Jan;62(1):8-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2824858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):1810-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6572-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8692858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jul 1;15(13):3247-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2006 Aug 15;98(6):1570-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16552725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Sep 25;174(7):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16982803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2006 Nov 30;72(11):1477-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16876765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(1):237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):718-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Dec;3(12):e525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(3):1220-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Feb 1;109(3):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Mar 8;25(12):2173-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(6):2554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 May;81(10):5423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Dec 1;16(23):7067-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9384585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2006 Feb;12(2):53-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 12;312(5775):879-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(11):5156-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(11):5168-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):6072-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 15;19(22):6196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451827</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<name sortKey="Heise, Mark" sort="Heise, Mark" uniqKey="Heise M" first="Mark" last="Heise">Mark Heise</name>
<name sortKey="Kopecky Bromberg, Sarah A" sort="Kopecky Bromberg, Sarah A" uniqKey="Kopecky Bromberg S" first="Sarah A" last="Kopecky-Bromberg">Sarah A. Kopecky-Bromberg</name>
<name sortKey="Palese, Peter" sort="Palese, Peter" uniqKey="Palese P" first="Peter" last="Palese">Peter Palese</name>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17596301
   |texte=   Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17596301" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021