Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA.

Identifieur interne : 001C79 ( PubMed/Checkpoint ); précédent : 001C78; suivant : 001C80

Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA.

Auteurs : Chun-Yuan Chen [République populaire de Chine] ; Chung-Ke Chang ; Yi-Wei Chang ; Shih-Che Sue ; Hsin-I Bai ; Lilianty Riang ; Chwan-Deng Hsiao ; Tai-Huang Huang

Source :

RBID : pubmed:17379242

Descripteurs français

English descriptors

Abstract

Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.

DOI: 10.1016/j.jmb.2007.02.069
PubMed: 17379242


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17379242

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA.</title>
<author>
<name sortKey="Chen, Chun Yuan" sort="Chen, Chun Yuan" uniqKey="Chen C" first="Chun-Yuan" last="Chen">Chun-Yuan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
</author>
<author>
<name sortKey="Chang, Yi Wei" sort="Chang, Yi Wei" uniqKey="Chang Y" first="Yi-Wei" last="Chang">Yi-Wei Chang</name>
</author>
<author>
<name sortKey="Sue, Shih Che" sort="Sue, Shih Che" uniqKey="Sue S" first="Shih-Che" last="Sue">Shih-Che Sue</name>
</author>
<author>
<name sortKey="Bai, Hsin I" sort="Bai, Hsin I" uniqKey="Bai H" first="Hsin-I" last="Bai">Hsin-I Bai</name>
</author>
<author>
<name sortKey="Riang, Lilianty" sort="Riang, Lilianty" uniqKey="Riang L" first="Lilianty" last="Riang">Lilianty Riang</name>
</author>
<author>
<name sortKey="Hsiao, Chwan Deng" sort="Hsiao, Chwan Deng" uniqKey="Hsiao C" first="Chwan-Deng" last="Hsiao">Chwan-Deng Hsiao</name>
</author>
<author>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17379242</idno>
<idno type="pmid">17379242</idno>
<idno type="doi">10.1016/j.jmb.2007.02.069</idno>
<idno type="wicri:Area/PubMed/Corpus">001E65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E65</idno>
<idno type="wicri:Area/PubMed/Curation">001E65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E65</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C79</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA.</title>
<author>
<name sortKey="Chen, Chun Yuan" sort="Chen, Chun Yuan" uniqKey="Chen C" first="Chun-Yuan" last="Chen">Chun-Yuan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
</author>
<author>
<name sortKey="Chang, Yi Wei" sort="Chang, Yi Wei" uniqKey="Chang Y" first="Yi-Wei" last="Chang">Yi-Wei Chang</name>
</author>
<author>
<name sortKey="Sue, Shih Che" sort="Sue, Shih Che" uniqKey="Sue S" first="Shih-Che" last="Sue">Shih-Che Sue</name>
</author>
<author>
<name sortKey="Bai, Hsin I" sort="Bai, Hsin I" uniqKey="Bai H" first="Hsin-I" last="Bai">Hsin-I Bai</name>
</author>
<author>
<name sortKey="Riang, Lilianty" sort="Riang, Lilianty" uniqKey="Riang L" first="Lilianty" last="Riang">Lilianty Riang</name>
</author>
<author>
<name sortKey="Hsiao, Chwan Deng" sort="Hsiao, Chwan Deng" uniqKey="Hsiao C" first="Chwan-Deng" last="Hsiao">Chwan-Deng Hsiao</name>
</author>
<author>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Dimerization</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Nucleocapsid Proteins (chemistry)</term>
<term>Protein Structure, Tertiary</term>
<term>RNA, Viral (metabolism)</term>
<term>RNA-Binding Proteins (chemistry)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral (métabolisme)</term>
<term>Conformation d'acide nucléique</term>
<term>Dimérisation</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Protéines de liaison à l'ARN ()</term>
<term>Protéines nucléocapside ()</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nucleocapsid Proteins</term>
<term>RNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN viral</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Dimerization</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation d'acide nucléique</term>
<term>Dimérisation</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines nucléocapside</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17379242</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-2836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>368</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>May</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA.</ArticleTitle>
<Pagination>
<MedlinePgn>1075-86</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Chun-Yuan</ForeName>
<Initials>CY</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Chung-Ke</ForeName>
<Initials>CK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Yi-Wei</ForeName>
<Initials>YW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sue</LastName>
<ForeName>Shih-Che</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Hsin-I</ForeName>
<Initials>HI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riang</LastName>
<ForeName>Lilianty</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsiao</LastName>
<ForeName>Chwan-Deng</ForeName>
<Initials>CD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Tai-Huang</ForeName>
<Initials>TH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2CJR</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>03</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019590">Nucleocapsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099602">nucleocapsid protein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019590" MajorTopicYN="N">Nucleocapsid Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17379242</ArticleId>
<ArticleId IdType="pii">S0022-2836(07)00261-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2007.02.069</ArticleId>
<ArticleId IdType="pmc">PMC7094638</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 1999 Apr-May;125(2-3):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10222271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 1991;11(4):281-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1758883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 2):1772-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351820</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134934</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2006 Oct 3;45(39):11827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17002283</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Nov 28;311(4):870-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2005 Oct 24;579(25):5663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214138</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 25;43(20):6059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):13848-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2005 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630477</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomed Sci. 2006 Jan;13(1):59-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteomics. 2005 Mar;5(4):925-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15759315</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Biophys. 1990;26:157-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2082726</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2003 Oct;11(10):1219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527390</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Aug;59(Pt 8):1504-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12876367</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Apr 2;316(2):476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):23280-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849181</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Apr 21;281(16):10669-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16431923</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO Rep. 2001 Apr;2(4):313-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11306552</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212932</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Virol. 2003 Nov;71(3):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12966536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2005 Dec;13(12):1859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16338414</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jul;80(13):6612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16775348</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2004 Oct 1;383(Pt 1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7918-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6574838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Biophys. 1975;7:1-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1101655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2003 Nov;11(11):1445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14604534</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2003;374:22-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14696367</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bai, Hsin I" sort="Bai, Hsin I" uniqKey="Bai H" first="Hsin-I" last="Bai">Hsin-I Bai</name>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
<name sortKey="Chang, Yi Wei" sort="Chang, Yi Wei" uniqKey="Chang Y" first="Yi-Wei" last="Chang">Yi-Wei Chang</name>
<name sortKey="Hsiao, Chwan Deng" sort="Hsiao, Chwan Deng" uniqKey="Hsiao C" first="Chwan-Deng" last="Hsiao">Chwan-Deng Hsiao</name>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
<name sortKey="Riang, Lilianty" sort="Riang, Lilianty" uniqKey="Riang L" first="Lilianty" last="Riang">Lilianty Riang</name>
<name sortKey="Sue, Shih Che" sort="Sue, Shih Che" uniqKey="Sue S" first="Shih-Che" last="Sue">Shih-Che Sue</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Chun Yuan" sort="Chen, Chun Yuan" uniqKey="Chen C" first="Chun-Yuan" last="Chen">Chun-Yuan Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17379242
   |texte=   Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17379242" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021