Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

QM/QM studies for Michael reaction in coronavirus main protease (3CL Pro).

Identifieur interne : 001A55 ( PubMed/Checkpoint ); précédent : 001A54; suivant : 001A56

QM/QM studies for Michael reaction in coronavirus main protease (3CL Pro).

Auteurs : Alex G. Taranto [Brésil] ; Paulo Carvalho ; Mitchell A. Avery

Source :

RBID : pubmed:18567519

Descripteurs français

English descriptors

Abstract

Severe acute respiratory syndrome (SARS) is an illness caused by a novel corona virus wherein the main proteinase called 3CL(Pro) has been established as a target for drug design. The mechanism of action involves nucleophilic attack by Cys145 present in the active site on the carbonyl carbon of the scissile amide bond of the substrate and the intermediate product is stabilized by hydrogen bonds with the residues of the oxyanion hole. Based on the X-ray structure of 3CL(Pro) co-crystallized with a trans-alpha,beta-unsaturated ethyl ester (Michael acceptor), a set of QM/QM and QM/MM calculations were performed, yielding three models with increasingly higher the number of atoms. A previous validation step was performed using classical theoretical calculation and PROCHECK software. The Michael reaction studies show an exothermic process with -4.5 kcal/mol. During the reaction pathway, an intermediate is formed by hydrogen and water molecule migration from a histidine residue and solvent, respectively. In addition, similar with experimental results, the complex between N3 and 3CL(Pro) is 578 kcal/mol more stable than N1-3CL(Pro) using Own N-layer Integrated molecular Orbital molecular Mechanics (ONIOM) approach. We suggest 3CL(Pro) inhibitors need small polar groups to decrease the energy barrier for alkylation reaction. These results can be useful for the development of new compounds against SARS.

DOI: 10.1016/j.jmgm.2008.05.002
PubMed: 18567519


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18567519

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">QM/QM studies for Michael reaction in coronavirus main protease (3CL Pro).</title>
<author>
<name sortKey="Taranto, Alex G" sort="Taranto, Alex G" uniqKey="Taranto A" first="Alex G" last="Taranto">Alex G. Taranto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Saúde, Universidade Estadual de Feira de Santana (UEFS), BA, Brazil. taranto@uefs.br</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Saúde, Universidade Estadual de Feira de Santana (UEFS), BA</wicri:regionArea>
<placeName>
<region type="state">Bahia</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carvalho, Paulo" sort="Carvalho, Paulo" uniqKey="Carvalho P" first="Paulo" last="Carvalho">Paulo Carvalho</name>
</author>
<author>
<name sortKey="Avery, Mitchell A" sort="Avery, Mitchell A" uniqKey="Avery M" first="Mitchell A" last="Avery">Mitchell A. Avery</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18567519</idno>
<idno type="pmid">18567519</idno>
<idno type="doi">10.1016/j.jmgm.2008.05.002</idno>
<idno type="wicri:Area/PubMed/Corpus">001B16</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B16</idno>
<idno type="wicri:Area/PubMed/Curation">001B16</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001B16</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001A55</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001A55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">QM/QM studies for Michael reaction in coronavirus main protease (3CL Pro).</title>
<author>
<name sortKey="Taranto, Alex G" sort="Taranto, Alex G" uniqKey="Taranto A" first="Alex G" last="Taranto">Alex G. Taranto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Saúde, Universidade Estadual de Feira de Santana (UEFS), BA, Brazil. taranto@uefs.br</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Saúde, Universidade Estadual de Feira de Santana (UEFS), BA</wicri:regionArea>
<placeName>
<region type="state">Bahia</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carvalho, Paulo" sort="Carvalho, Paulo" uniqKey="Carvalho P" first="Paulo" last="Carvalho">Paulo Carvalho</name>
</author>
<author>
<name sortKey="Avery, Mitchell A" sort="Avery, Mitchell A" uniqKey="Avery M" first="Mitchell A" last="Avery">Mitchell A. Avery</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular graphics & modelling</title>
<idno type="eISSN">1873-4243</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysis</term>
<term>Catalytic Domain</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Protease Inhibitors (chemistry)</term>
<term>Quantum Theory</term>
<term>Reproducibility of Results</term>
<term>SARS Virus (enzymology)</term>
<term>Thermodynamics</term>
<term>Viral Proteins (antagonists & inhibitors)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalyse</term>
<term>Cysteine endopeptidases ()</term>
<term>Cysteine endopeptidases (métabolisme)</term>
<term>Domaine catalytique</term>
<term>Inhibiteurs de protéases ()</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Protéines virales ()</term>
<term>Protéines virales (antagonistes et inhibiteurs)</term>
<term>Protéines virales (métabolisme)</term>
<term>Reproductibilité des résultats</term>
<term>Thermodynamique</term>
<term>Théorie quantique</term>
<term>Virus du SRAS (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Protease Inhibitors</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Catalytic Domain</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Quantum Theory</term>
<term>Reproducibility of Results</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Cysteine endopeptidases</term>
<term>Domaine catalytique</term>
<term>Inhibiteurs de protéases</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Protéines virales</term>
<term>Reproductibilité des résultats</term>
<term>Thermodynamique</term>
<term>Théorie quantique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome (SARS) is an illness caused by a novel corona virus wherein the main proteinase called 3CL(Pro) has been established as a target for drug design. The mechanism of action involves nucleophilic attack by Cys145 present in the active site on the carbonyl carbon of the scissile amide bond of the substrate and the intermediate product is stabilized by hydrogen bonds with the residues of the oxyanion hole. Based on the X-ray structure of 3CL(Pro) co-crystallized with a trans-alpha,beta-unsaturated ethyl ester (Michael acceptor), a set of QM/QM and QM/MM calculations were performed, yielding three models with increasingly higher the number of atoms. A previous validation step was performed using classical theoretical calculation and PROCHECK software. The Michael reaction studies show an exothermic process with -4.5 kcal/mol. During the reaction pathway, an intermediate is formed by hydrogen and water molecule migration from a histidine residue and solvent, respectively. In addition, similar with experimental results, the complex between N3 and 3CL(Pro) is 578 kcal/mol more stable than N1-3CL(Pro) using Own N-layer Integrated molecular Orbital molecular Mechanics (ONIOM) approach. We suggest 3CL(Pro) inhibitors need small polar groups to decrease the energy barrier for alkylation reaction. These results can be useful for the development of new compounds against SARS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18567519</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4243</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular graphics & modelling</Title>
<ISOAbbreviation>J. Mol. Graph. Model.</ISOAbbreviation>
</Journal>
<ArticleTitle>QM/QM studies for Michael reaction in coronavirus main protease (3CL Pro).</ArticleTitle>
<Pagination>
<MedlinePgn>275-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmgm.2008.05.002</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome (SARS) is an illness caused by a novel corona virus wherein the main proteinase called 3CL(Pro) has been established as a target for drug design. The mechanism of action involves nucleophilic attack by Cys145 present in the active site on the carbonyl carbon of the scissile amide bond of the substrate and the intermediate product is stabilized by hydrogen bonds with the residues of the oxyanion hole. Based on the X-ray structure of 3CL(Pro) co-crystallized with a trans-alpha,beta-unsaturated ethyl ester (Michael acceptor), a set of QM/QM and QM/MM calculations were performed, yielding three models with increasingly higher the number of atoms. A previous validation step was performed using classical theoretical calculation and PROCHECK software. The Michael reaction studies show an exothermic process with -4.5 kcal/mol. During the reaction pathway, an intermediate is formed by hydrogen and water molecule migration from a histidine residue and solvent, respectively. In addition, similar with experimental results, the complex between N3 and 3CL(Pro) is 578 kcal/mol more stable than N1-3CL(Pro) using Own N-layer Integrated molecular Orbital molecular Mechanics (ONIOM) approach. We suggest 3CL(Pro) inhibitors need small polar groups to decrease the energy barrier for alkylation reaction. These results can be useful for the development of new compounds against SARS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Taranto</LastName>
<ForeName>Alex G</ForeName>
<Initials>AG</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Saúde, Universidade Estadual de Feira de Santana (UEFS), BA, Brazil. taranto@uefs.br</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carvalho</LastName>
<ForeName>Paulo</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Avery</LastName>
<ForeName>Mitchell A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Mol Graph Model</MedlineTA>
<NlmUniqueID>9716237</NlmUniqueID>
<ISSNLinking>1093-3263</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011480">Protease Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011480" MajorTopicYN="N">Protease Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011789" MajorTopicYN="N">Quantum Theory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18567519</ArticleId>
<ArticleId IdType="pii">S1093-3263(08)00060-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmgm.2008.05.002</ArticleId>
<ArticleId IdType="pmc">PMC7110475</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem. 2004 May 1;12(9):2219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15080921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Med Chem. 2004;4(12):1239-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15320724</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 1998 Jul 16;41(15):2786-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9667969</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1989 Jun 26;17(12):4847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Protein Chem. 1968;23:283-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4882249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1995 Aug;4(8):1439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2006 May;2(3):815-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26626688</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 1992 Mar 20;35(6):1067-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1552501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Med Chem. 2002 May;9(9):979-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11966457</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Feb;49(2):619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15673742</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Org Chem. 2005 Jan 7;70(1):233-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15624927</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Inf Model. 2005 May-Jun;45(3):716-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15921461</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Toxicol Lett. 1989 Jun;47(3):241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2749769</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1976 May 15;103(2):227-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">985660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Med Chem. 2006;6(4):331-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2004 Oct;11(10):1445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9944570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 1995 Sep;20(9):374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7482707</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 1998 Jul 16;41(15):2819-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9667971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6832-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250642</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Graph Model. 2000 Feb;18(1):50-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10935207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 1998 Jul 2;41(14):2579-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9651162</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2003 Oct 9;46(21):4572-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14521419</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2002 Jul 1;21(13):3213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2004 Dec 2;47(25):6113-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15566280</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10500114</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
<region>
<li>Bahia</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Avery, Mitchell A" sort="Avery, Mitchell A" uniqKey="Avery M" first="Mitchell A" last="Avery">Mitchell A. Avery</name>
<name sortKey="Carvalho, Paulo" sort="Carvalho, Paulo" uniqKey="Carvalho P" first="Paulo" last="Carvalho">Paulo Carvalho</name>
</noCountry>
<country name="Brésil">
<region name="Bahia">
<name sortKey="Taranto, Alex G" sort="Taranto, Alex G" uniqKey="Taranto A" first="Alex G" last="Taranto">Alex G. Taranto</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001A55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18567519
   |texte=   QM/QM studies for Michael reaction in coronavirus main protease (3CL Pro).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18567519" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021