Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses.

Identifieur interne : 001857 ( PubMed/Checkpoint ); précédent : 001856; suivant : 001858

Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses.

Auteurs : James A. Wiley [États-Unis] ; Laura E. Richert ; Steve D. Swain ; Ann Harmsen ; Dale L. Barnard ; Troy D. Randall ; Mark Jutila ; Trevor Douglas ; Chris Broomell ; Mark Young ; Allen Harmsen

Source :

RBID : pubmed:19774076

Descripteurs français

English descriptors

Abstract

Destruction of the architectural and subsequently the functional integrity of the lung following pulmonary viral infections is attributable to both the extent of pathogen replication and to the host-generated inflammation associated with the recruitment of immune responses. The presence of antigenically disparate pulmonary viruses and the emergence of novel viruses assures the recurrence of lung damage with infection and resolution of each primary viral infection. Thus, there is a need to develop safe broad spectrum immunoprophylactic strategies capable of enhancing protective immune responses in the lung but which limits immune-mediated lung damage. The immunoprophylactic strategy described here utilizes a protein cage nanoparticle (PCN) to significantly accelerate clearance of diverse respiratory viruses after primary infection and also results in a host immune response that causes less lung damage.

DOI: 10.1371/journal.pone.0007142
PubMed: 19774076


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19774076

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses.</title>
<author>
<name sortKey="Wiley, James A" sort="Wiley, James A" uniqKey="Wiley J" first="James A" last="Wiley">James A. Wiley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America. jwiley@montana.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Richert, Laura E" sort="Richert, Laura E" uniqKey="Richert L" first="Laura E" last="Richert">Laura E. Richert</name>
</author>
<author>
<name sortKey="Swain, Steve D" sort="Swain, Steve D" uniqKey="Swain S" first="Steve D" last="Swain">Steve D. Swain</name>
</author>
<author>
<name sortKey="Harmsen, Ann" sort="Harmsen, Ann" uniqKey="Harmsen A" first="Ann" last="Harmsen">Ann Harmsen</name>
</author>
<author>
<name sortKey="Barnard, Dale L" sort="Barnard, Dale L" uniqKey="Barnard D" first="Dale L" last="Barnard">Dale L. Barnard</name>
</author>
<author>
<name sortKey="Randall, Troy D" sort="Randall, Troy D" uniqKey="Randall T" first="Troy D" last="Randall">Troy D. Randall</name>
</author>
<author>
<name sortKey="Jutila, Mark" sort="Jutila, Mark" uniqKey="Jutila M" first="Mark" last="Jutila">Mark Jutila</name>
</author>
<author>
<name sortKey="Douglas, Trevor" sort="Douglas, Trevor" uniqKey="Douglas T" first="Trevor" last="Douglas">Trevor Douglas</name>
</author>
<author>
<name sortKey="Broomell, Chris" sort="Broomell, Chris" uniqKey="Broomell C" first="Chris" last="Broomell">Chris Broomell</name>
</author>
<author>
<name sortKey="Young, Mark" sort="Young, Mark" uniqKey="Young M" first="Mark" last="Young">Mark Young</name>
</author>
<author>
<name sortKey="Harmsen, Allen" sort="Harmsen, Allen" uniqKey="Harmsen A" first="Allen" last="Harmsen">Allen Harmsen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19774076</idno>
<idno type="pmid">19774076</idno>
<idno type="doi">10.1371/journal.pone.0007142</idno>
<idno type="wicri:Area/PubMed/Corpus">001826</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001826</idno>
<idno type="wicri:Area/PubMed/Curation">001826</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001826</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001857</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001857</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses.</title>
<author>
<name sortKey="Wiley, James A" sort="Wiley, James A" uniqKey="Wiley J" first="James A" last="Wiley">James A. Wiley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America. jwiley@montana.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Richert, Laura E" sort="Richert, Laura E" uniqKey="Richert L" first="Laura E" last="Richert">Laura E. Richert</name>
</author>
<author>
<name sortKey="Swain, Steve D" sort="Swain, Steve D" uniqKey="Swain S" first="Steve D" last="Swain">Steve D. Swain</name>
</author>
<author>
<name sortKey="Harmsen, Ann" sort="Harmsen, Ann" uniqKey="Harmsen A" first="Ann" last="Harmsen">Ann Harmsen</name>
</author>
<author>
<name sortKey="Barnard, Dale L" sort="Barnard, Dale L" uniqKey="Barnard D" first="Dale L" last="Barnard">Dale L. Barnard</name>
</author>
<author>
<name sortKey="Randall, Troy D" sort="Randall, Troy D" uniqKey="Randall T" first="Troy D" last="Randall">Troy D. Randall</name>
</author>
<author>
<name sortKey="Jutila, Mark" sort="Jutila, Mark" uniqKey="Jutila M" first="Mark" last="Jutila">Mark Jutila</name>
</author>
<author>
<name sortKey="Douglas, Trevor" sort="Douglas, Trevor" uniqKey="Douglas T" first="Trevor" last="Douglas">Trevor Douglas</name>
</author>
<author>
<name sortKey="Broomell, Chris" sort="Broomell, Chris" uniqKey="Broomell C" first="Chris" last="Broomell">Chris Broomell</name>
</author>
<author>
<name sortKey="Young, Mark" sort="Young, Mark" uniqKey="Young M" first="Mark" last="Young">Mark Young</name>
</author>
<author>
<name sortKey="Harmsen, Allen" sort="Harmsen, Allen" uniqKey="Harmsen A" first="Allen" last="Harmsen">Allen Harmsen</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Bronchi (metabolism)</term>
<term>Bronchi (microbiology)</term>
<term>Bronchi (virology)</term>
<term>Bronchoalveolar Lavage Fluid</term>
<term>Coxiella burnetii (metabolism)</term>
<term>Female</term>
<term>Infections (pathology)</term>
<term>Lung (immunology)</term>
<term>Lung (microbiology)</term>
<term>Lung (virology)</term>
<term>Lymphoid Tissue (metabolism)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred C3H</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanotechnology (methods)</term>
<term>Orthomyxoviridae (metabolism)</term>
<term>Pneumovirus (metabolism)</term>
<term>SARS Virus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Bronches (microbiologie)</term>
<term>Bronches (métabolisme)</term>
<term>Bronches (virologie)</term>
<term>Coxiella burnetii (métabolisme)</term>
<term>Femelle</term>
<term>Liquide de lavage bronchoalvéolaire</term>
<term>Mâle</term>
<term>Nanoparticules ()</term>
<term>Nanotechnologie ()</term>
<term>Orthomyxoviridae (métabolisme)</term>
<term>Pneumovirus (métabolisme)</term>
<term>Poumon (immunologie)</term>
<term>Poumon (microbiologie)</term>
<term>Poumon (virologie)</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Souris de lignée C3H</term>
<term>Tissu lymphoïde (métabolisme)</term>
<term>Virus du SRAS (métabolisme)</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bronchi</term>
<term>Coxiella burnetii</term>
<term>Lymphoid Tissue</term>
<term>Orthomyxoviridae</term>
<term>Pneumovirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Nanotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bronches</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Bronchi</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bronches</term>
<term>Coxiella burnetii</term>
<term>Orthomyxoviridae</term>
<term>Pneumovirus</term>
<term>Tissu lymphoïde</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Bronches</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Bronchi</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bronchoalveolar Lavage Fluid</term>
<term>Female</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred C3H</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Liquide de lavage bronchoalvéolaire</term>
<term>Mâle</term>
<term>Nanoparticules</term>
<term>Nanotechnologie</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Souris de lignée C3H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Destruction of the architectural and subsequently the functional integrity of the lung following pulmonary viral infections is attributable to both the extent of pathogen replication and to the host-generated inflammation associated with the recruitment of immune responses. The presence of antigenically disparate pulmonary viruses and the emergence of novel viruses assures the recurrence of lung damage with infection and resolution of each primary viral infection. Thus, there is a need to develop safe broad spectrum immunoprophylactic strategies capable of enhancing protective immune responses in the lung but which limits immune-mediated lung damage. The immunoprophylactic strategy described here utilizes a protein cage nanoparticle (PCN) to significantly accelerate clearance of diverse respiratory viruses after primary infection and also results in a host immune response that causes less lung damage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19774076</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses.</ArticleTitle>
<Pagination>
<MedlinePgn>e7142</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0007142</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Destruction of the architectural and subsequently the functional integrity of the lung following pulmonary viral infections is attributable to both the extent of pathogen replication and to the host-generated inflammation associated with the recruitment of immune responses. The presence of antigenically disparate pulmonary viruses and the emergence of novel viruses assures the recurrence of lung damage with infection and resolution of each primary viral infection. Thus, there is a need to develop safe broad spectrum immunoprophylactic strategies capable of enhancing protective immune responses in the lung but which limits immune-mediated lung damage. The immunoprophylactic strategy described here utilizes a protein cage nanoparticle (PCN) to significantly accelerate clearance of diverse respiratory viruses after primary infection and also results in a host immune response that causes less lung damage.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">Mice pre-treated with PCN, independent of any specific viral antigens, were protected against both sub-lethal and lethal doses of two different influenza viruses, a mouse-adapted SARS-coronavirus, or mouse pneumovirus. Treatment with PCN significantly increased survival and was marked by enhanced viral clearance, accelerated induction of viral-specific antibody production, and significant decreases in morbidity and lung damage. The enhanced protection appears to be dependent upon the prior development of inducible bronchus-associated lymphoid tissue (iBALT) in the lung in response to the PCN treatment and to be mediated through CD4+ T cell and B cell dependent mechanisms.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">The immunoprophylactic strategy described utilizes an infection-independent induction of naturally occurring iBALT prior to infection by a pulmonary viral pathogen. This strategy non-specifically enhances primary immunity to respiratory viruses and is not restricted by the antigen specificities inherent in typical vaccination strategies. PCN treatment is asymptomatic in its application and importantly, ameliorates the damaging inflammation normally associated with the recruitment of immune responses into the lung.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wiley</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America. jwiley@montana.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Richert</LastName>
<ForeName>Laura E</ForeName>
<Initials>LE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Swain</LastName>
<ForeName>Steve D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harmsen</LastName>
<ForeName>Ann</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barnard</LastName>
<ForeName>Dale L</ForeName>
<Initials>DL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Randall</LastName>
<ForeName>Troy D</ForeName>
<Initials>TD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jutila</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Douglas</LastName>
<ForeName>Trevor</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Broomell</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harmsen</LastName>
<ForeName>Allen</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN26620040009C/N01-AI-40009</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>N01AI40009</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20-RR16455</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI083520</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI072689</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>EB005364</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54-AI065357</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 EB005364</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20-RR020185</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI072689</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 AI065357</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR016455</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL69409</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI083520</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL069409</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR020185</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001980" MajorTopicYN="N">Bronchi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001992" MajorTopicYN="N">Bronchoalveolar Lavage Fluid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016997" MajorTopicYN="N">Coxiella burnetii</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007239" MajorTopicYN="N">Infections</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008221" MajorTopicYN="N">Lymphoid Tissue</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008809" MajorTopicYN="N">Mice, Inbred C3H</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036103" MajorTopicYN="N">Nanotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009975" MajorTopicYN="N">Orthomyxoviridae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018111" MajorTopicYN="N">Pneumovirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19774076</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0007142</ArticleId>
<ArticleId IdType="pmc">PMC2743193</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2001 Jan;158(1):119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11141485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 2008 Jun 15;118(1):6-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18471897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 Oct 20;198(8):1237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Sep;10(9):927-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15311275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 1996 Aug;9(8):1736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8866602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Aug 6;394(6693):595-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 11;282(5396):2085-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1999 Mar;154(3):919-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10079270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2004 Dec;3(6):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15606348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Sep 1;175(5):3186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2006 Feb;13(2):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16492564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2006 Oct;25(4):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17045819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Nov 17;24(47-48):6913-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17014939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Dec;116(12):3183-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17143328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2007 Oct;75(10):4942-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17646358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2008 Feb;20(1):26-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18243731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2008;26:627-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18370924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2008 May 2;26(19):2360-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2003 Oct;163(4):1341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507643</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Montana</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Barnard, Dale L" sort="Barnard, Dale L" uniqKey="Barnard D" first="Dale L" last="Barnard">Dale L. Barnard</name>
<name sortKey="Broomell, Chris" sort="Broomell, Chris" uniqKey="Broomell C" first="Chris" last="Broomell">Chris Broomell</name>
<name sortKey="Douglas, Trevor" sort="Douglas, Trevor" uniqKey="Douglas T" first="Trevor" last="Douglas">Trevor Douglas</name>
<name sortKey="Harmsen, Allen" sort="Harmsen, Allen" uniqKey="Harmsen A" first="Allen" last="Harmsen">Allen Harmsen</name>
<name sortKey="Harmsen, Ann" sort="Harmsen, Ann" uniqKey="Harmsen A" first="Ann" last="Harmsen">Ann Harmsen</name>
<name sortKey="Jutila, Mark" sort="Jutila, Mark" uniqKey="Jutila M" first="Mark" last="Jutila">Mark Jutila</name>
<name sortKey="Randall, Troy D" sort="Randall, Troy D" uniqKey="Randall T" first="Troy D" last="Randall">Troy D. Randall</name>
<name sortKey="Richert, Laura E" sort="Richert, Laura E" uniqKey="Richert L" first="Laura E" last="Richert">Laura E. Richert</name>
<name sortKey="Swain, Steve D" sort="Swain, Steve D" uniqKey="Swain S" first="Steve D" last="Swain">Steve D. Swain</name>
<name sortKey="Young, Mark" sort="Young, Mark" uniqKey="Young M" first="Mark" last="Young">Mark Young</name>
</noCountry>
<country name="États-Unis">
<region name="Montana">
<name sortKey="Wiley, James A" sort="Wiley, James A" uniqKey="Wiley J" first="James A" last="Wiley">James A. Wiley</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001857 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001857 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19774076
   |texte=   Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19774076" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021