Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo.

Identifieur interne : 001805 ( PubMed/Checkpoint ); précédent : 001804; suivant : 001806

Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo.

Auteurs : Susanne Pfefferle [Allemagne] ; Verena Kr Hling ; Vanessa Ditt ; Klaus Grywna ; Elke Mühlberger ; Christian Drosten

Source :

RBID : pubmed:19698190

Descripteurs français

English descriptors

Abstract

During the outbreak of SARS in 2002/3, a prototype virus was isolated from a patient in Frankfurt/Germany (strain Frankfurt-1). As opposed to all other SARS-Coronavirus strains, Frankfurt-1 has a 45-nucleotide deletion in the transmembrane domain of its ORF 7b protein. When over-expressed in HEK 293 cells, the full-length protein but not the variant with the deletion caused interferon beta induction and cleavage of procaspase 3. To study the role of ORF 7b in the context of virus replication, we cloned a full genome cDNA copy of Frankfurt-1 in a bacterial artificial chromosome downstream of a T7 RNA polymerase promoter. Transfection of capped RNA transcribed from this construct yielded infectious virus that was indistinguishable from the original virus isolate. The presumed Frankfurt-1 ancestor with an intact ORF 7b was reconstructed. In CaCo-2 and HUH7 cells, but not in Vero cells, the variant carrying the ORF 7b deletion had a replicative advantage against the parental virus (4- and 6-fold increase of virus RNA in supernatant, respectively). This effect was neither associated with changes in the induction or secretion of type I interferon, nor with altered induction of apoptosis in cell culture. However, pretreatment of cells with interferon beta caused the deleted virus to replicate to higher titers than the parental strain (3.4-fold in Vero cells, 7.9-fold in CaCo-2 cells). In Syrian Golden Hamsters inoculated intranasally with 10e4 plaque forming units of either virus, mean titers of infectious virus and viral RNA in the lungs after 24 h were increased 23- and 94.8-fold, respectively, with the deleted virus. This difference could explain earlier observations of enhanced virulence of Frankfurt-1 in Hamsters as compared to other SARS-Coronavirus reference strains and identifies the SARS-CoV 7b protein as an attenuating factor with the SARS-Coronavirus genome. Because attenuation was focused on the early phase of infection in-vivo, ORF 7b might have contributed to the delayed accumulation of virus in patients that was suggested to have limited the spread of the SARS epidemic.

DOI: 10.1186/1743-422X-6-131
PubMed: 19698190


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19698190

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo.</title>
<author>
<name sortKey="Pfefferle, Susanne" sort="Pfefferle, Susanne" uniqKey="Pfefferle S" first="Susanne" last="Pfefferle">Susanne Pfefferle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. pfefferle@bni-hamburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg</wicri:regionArea>
<placeName>
<settlement type="city">Hambourg</settlement>
<region type="land" nuts="2">Hambourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kr Hling, Verena" sort="Kr Hling, Verena" uniqKey="Kr Hling V" first="Verena" last="Kr Hling">Verena Kr Hling</name>
</author>
<author>
<name sortKey="Ditt, Vanessa" sort="Ditt, Vanessa" uniqKey="Ditt V" first="Vanessa" last="Ditt">Vanessa Ditt</name>
</author>
<author>
<name sortKey="Grywna, Klaus" sort="Grywna, Klaus" uniqKey="Grywna K" first="Klaus" last="Grywna">Klaus Grywna</name>
</author>
<author>
<name sortKey="Muhlberger, Elke" sort="Muhlberger, Elke" uniqKey="Muhlberger E" first="Elke" last="Mühlberger">Elke Mühlberger</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19698190</idno>
<idno type="pmid">19698190</idno>
<idno type="doi">10.1186/1743-422X-6-131</idno>
<idno type="wicri:Area/PubMed/Corpus">001842</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001842</idno>
<idno type="wicri:Area/PubMed/Curation">001842</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001842</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001805</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001805</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo.</title>
<author>
<name sortKey="Pfefferle, Susanne" sort="Pfefferle, Susanne" uniqKey="Pfefferle S" first="Susanne" last="Pfefferle">Susanne Pfefferle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. pfefferle@bni-hamburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg</wicri:regionArea>
<placeName>
<settlement type="city">Hambourg</settlement>
<region type="land" nuts="2">Hambourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kr Hling, Verena" sort="Kr Hling, Verena" uniqKey="Kr Hling V" first="Verena" last="Kr Hling">Verena Kr Hling</name>
</author>
<author>
<name sortKey="Ditt, Vanessa" sort="Ditt, Vanessa" uniqKey="Ditt V" first="Vanessa" last="Ditt">Vanessa Ditt</name>
</author>
<author>
<name sortKey="Grywna, Klaus" sort="Grywna, Klaus" uniqKey="Grywna K" first="Klaus" last="Grywna">Klaus Grywna</name>
</author>
<author>
<name sortKey="Muhlberger, Elke" sort="Muhlberger, Elke" uniqKey="Muhlberger E" first="Elke" last="Mühlberger">Elke Mühlberger</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
</analytic>
<series>
<title level="j">Virology journal</title>
<idno type="eISSN">1743-422X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Chromosomes, Artificial, Bacterial</term>
<term>Cricetinae</term>
<term>Genetic Vectors</term>
<term>Humans</term>
<term>Lung (virology)</term>
<term>Mesocricetus</term>
<term>Molecular Sequence Data</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Sequence Analysis, DNA</term>
<term>Sequence Deletion</term>
<term>Severe Acute Respiratory Syndrome (pathology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (physiology)</term>
<term>Virulence</term>
<term>Virulence Factors (genetics)</term>
<term>Virulence Factors (physiology)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Chromosomes artificiels de bactérie</term>
<term>Cricetinae</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de séquence</term>
<term>Facteurs de virulence (génétique)</term>
<term>Facteurs de virulence (physiologie)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Mesocricetus</term>
<term>Poumon (virologie)</term>
<term>Protéines virales (génétique)</term>
<term>Protéines virales (physiologie)</term>
<term>Réplication virale</term>
<term>Syndrome respiratoire aigu sévère (anatomopathologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Vecteurs génétiques</term>
<term>Virulence</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Proteins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Protéines virales</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Viral Proteins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Poumon</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Chromosomes, Artificial, Bacterial</term>
<term>Cricetinae</term>
<term>Genetic Vectors</term>
<term>Humans</term>
<term>Mesocricetus</term>
<term>Molecular Sequence Data</term>
<term>Sequence Analysis, DNA</term>
<term>Sequence Deletion</term>
<term>Virulence</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Chromosomes artificiels de bactérie</term>
<term>Cricetinae</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de séquence</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Mesocricetus</term>
<term>Réplication virale</term>
<term>Vecteurs génétiques</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During the outbreak of SARS in 2002/3, a prototype virus was isolated from a patient in Frankfurt/Germany (strain Frankfurt-1). As opposed to all other SARS-Coronavirus strains, Frankfurt-1 has a 45-nucleotide deletion in the transmembrane domain of its ORF 7b protein. When over-expressed in HEK 293 cells, the full-length protein but not the variant with the deletion caused interferon beta induction and cleavage of procaspase 3. To study the role of ORF 7b in the context of virus replication, we cloned a full genome cDNA copy of Frankfurt-1 in a bacterial artificial chromosome downstream of a T7 RNA polymerase promoter. Transfection of capped RNA transcribed from this construct yielded infectious virus that was indistinguishable from the original virus isolate. The presumed Frankfurt-1 ancestor with an intact ORF 7b was reconstructed. In CaCo-2 and HUH7 cells, but not in Vero cells, the variant carrying the ORF 7b deletion had a replicative advantage against the parental virus (4- and 6-fold increase of virus RNA in supernatant, respectively). This effect was neither associated with changes in the induction or secretion of type I interferon, nor with altered induction of apoptosis in cell culture. However, pretreatment of cells with interferon beta caused the deleted virus to replicate to higher titers than the parental strain (3.4-fold in Vero cells, 7.9-fold in CaCo-2 cells). In Syrian Golden Hamsters inoculated intranasally with 10e4 plaque forming units of either virus, mean titers of infectious virus and viral RNA in the lungs after 24 h were increased 23- and 94.8-fold, respectively, with the deleted virus. This difference could explain earlier observations of enhanced virulence of Frankfurt-1 in Hamsters as compared to other SARS-Coronavirus reference strains and identifies the SARS-CoV 7b protein as an attenuating factor with the SARS-Coronavirus genome. Because attenuation was focused on the early phase of infection in-vivo, ORF 7b might have contributed to the delayed accumulation of virus in patients that was suggested to have limited the spread of the SARS epidemic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19698190</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-422X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Virology journal</Title>
<ISOAbbreviation>Virol. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo.</ArticleTitle>
<Pagination>
<MedlinePgn>131</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1743-422X-6-131</ELocationID>
<Abstract>
<AbstractText>During the outbreak of SARS in 2002/3, a prototype virus was isolated from a patient in Frankfurt/Germany (strain Frankfurt-1). As opposed to all other SARS-Coronavirus strains, Frankfurt-1 has a 45-nucleotide deletion in the transmembrane domain of its ORF 7b protein. When over-expressed in HEK 293 cells, the full-length protein but not the variant with the deletion caused interferon beta induction and cleavage of procaspase 3. To study the role of ORF 7b in the context of virus replication, we cloned a full genome cDNA copy of Frankfurt-1 in a bacterial artificial chromosome downstream of a T7 RNA polymerase promoter. Transfection of capped RNA transcribed from this construct yielded infectious virus that was indistinguishable from the original virus isolate. The presumed Frankfurt-1 ancestor with an intact ORF 7b was reconstructed. In CaCo-2 and HUH7 cells, but not in Vero cells, the variant carrying the ORF 7b deletion had a replicative advantage against the parental virus (4- and 6-fold increase of virus RNA in supernatant, respectively). This effect was neither associated with changes in the induction or secretion of type I interferon, nor with altered induction of apoptosis in cell culture. However, pretreatment of cells with interferon beta caused the deleted virus to replicate to higher titers than the parental strain (3.4-fold in Vero cells, 7.9-fold in CaCo-2 cells). In Syrian Golden Hamsters inoculated intranasally with 10e4 plaque forming units of either virus, mean titers of infectious virus and viral RNA in the lungs after 24 h were increased 23- and 94.8-fold, respectively, with the deleted virus. This difference could explain earlier observations of enhanced virulence of Frankfurt-1 in Hamsters as compared to other SARS-Coronavirus reference strains and identifies the SARS-CoV 7b protein as an attenuating factor with the SARS-Coronavirus genome. Because attenuation was focused on the early phase of infection in-vivo, ORF 7b might have contributed to the delayed accumulation of virus in patients that was suggested to have limited the spread of the SARS epidemic.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pfefferle</LastName>
<ForeName>Susanne</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. pfefferle@bni-hamburg.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krähling</LastName>
<ForeName>Verena</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ditt</LastName>
<ForeName>Vanessa</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grywna</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mühlberger</LastName>
<ForeName>Elke</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Drosten</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>FJ429166</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Virol J</MedlineTA>
<NlmUniqueID>101231645</NlmUniqueID>
<ISSNLinking>1743-422X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C515314">ORF7b protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="N">Chromosomes, Artificial, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008647" MajorTopicYN="N">Mesocricetus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017384" MajorTopicYN="Y">Sequence Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19698190</ArticleId>
<ArticleId IdType="pii">1743-422X-6-131</ArticleId>
<ArticleId IdType="doi">10.1186/1743-422X-6-131</ArticleId>
<ArticleId IdType="pmc">PMC2739521</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 2003 Mar 30;308(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(8):3863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2004 Jul;30(3):211-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15135736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Jul 29;359(1447):1091-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Aug;61(16):2100-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12683-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Nov 20;214(4523):916-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6272391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Jun 25;12(12):5123-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6330698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Apr;83(8):2330-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3010307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Dec;61(12):3809-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3479621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 15;108(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1993 Sep 1;53(17):3976-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8358726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Oct 1;212(2):622-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7571432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 May;72(5):4508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9557750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):14043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(1):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:161-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:199-227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2005 Feb;15(2):323-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Sci Tech. 2004 Aug;23(2):643-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15702725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2005 Jan;11(1):168-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15714661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7095-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2005 Dec;34(6):439-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(7):3670-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2006;3:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16571117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(11):5168-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Sep 15;194(6):808-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16941348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2006;3:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):718-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1848-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(6):2554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Dec;12(12):1834-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17326933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 25;361(1):18-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(12):6346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Aug 10;3(8):e109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Oct;81(20):11054-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):20-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2008 Jun;172(6):1625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Oct;82(19):9477-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Nov;74(22):10600-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11044104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Jun;82(Pt 6):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11369870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(9):4655-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Apr 25;296(1):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(22):11518-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Hambourg</li>
</region>
<settlement>
<li>Hambourg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Ditt, Vanessa" sort="Ditt, Vanessa" uniqKey="Ditt V" first="Vanessa" last="Ditt">Vanessa Ditt</name>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<name sortKey="Grywna, Klaus" sort="Grywna, Klaus" uniqKey="Grywna K" first="Klaus" last="Grywna">Klaus Grywna</name>
<name sortKey="Kr Hling, Verena" sort="Kr Hling, Verena" uniqKey="Kr Hling V" first="Verena" last="Kr Hling">Verena Kr Hling</name>
<name sortKey="Muhlberger, Elke" sort="Muhlberger, Elke" uniqKey="Muhlberger E" first="Elke" last="Mühlberger">Elke Mühlberger</name>
</noCountry>
<country name="Allemagne">
<region name="Hambourg">
<name sortKey="Pfefferle, Susanne" sort="Pfefferle, Susanne" uniqKey="Pfefferle S" first="Susanne" last="Pfefferle">Susanne Pfefferle</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001805 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001805 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19698190
   |texte=   Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19698190" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021