Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms.

Identifieur interne : 001796 ( PubMed/Checkpoint ); précédent : 001795; suivant : 001797

SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms.

Auteurs : Hong-Long Ji [États-Unis] ; Weifeng Song ; Zhiqian Gao ; Xue-Feng Su ; Hong-Guang Nie ; Yi Jiang ; Ji-Bin Peng ; Yu-Xian He ; Ying Liao ; Yong-Jian Zhou ; Albert Tousson ; Sadis Matalon

Source :

RBID : pubmed:19112100

Descripteurs français

English descriptors

Abstract

Among the multiple organ disorders caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), acute lung failure following atypical pneumonia is the most serious and often fatal event. We hypothesized that two of the hydrophilic structural coronoviral proteins (S and E) would regulate alveolar fluid clearance by decreasing the cell surface expression and activity of amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC), the rate-limiting protein in transepithelial Na(+) vectorial transport across distal lung epithelial cells. Coexpression of either S or E protein with human alpha-, beta-, and gamma-ENaC in Xenopus oocytes led to significant decreases of both amiloride-sensitive Na(+) currents and gamma-ENaC protein levels at their plasma membranes. S and E proteins decreased the rate of ENaC exocytosis and either had no effect (S) or decreased (E) rates of endocytosis. No direct interactions among SARS-CoV E protein with either alpha- or gamma-ENaC were indentified. Instead, the downregulation of ENaC activity by SARS proteins was partially or completely restored by administration of inhibitors of PKCalpha/beta1 and PKCzeta. Consistent with the whole cell data, expression of S and E proteins decreased ENaC single-channel activity in oocytes, and these effects were partially abrogated by PKCalpha/beta1 inhibitors. Finally, transfection of human airway epithelial (H441) cells with SARS E protein decreased whole cell amiloride-sensitive currents. These findings indicate that lung edema in SARS infection may be due at least in part to activation of PKC by SARS proteins, leading to decreasing levels and activity of ENaC at the apical surfaces of lung epithelial cells.

DOI: 10.1152/ajplung.90437.2008
PubMed: 19112100


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19112100

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms.</title>
<author>
<name sortKey="Ji, Hong Long" sort="Ji, Hong Long" uniqKey="Ji H" first="Hong-Long" last="Ji">Hong-Long Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Anesthesiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35233-6810, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anesthesiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35233-6810</wicri:regionArea>
<wicri:noRegion>Alabama 35233-6810</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Weifeng" sort="Song, Weifeng" uniqKey="Song W" first="Weifeng" last="Song">Weifeng Song</name>
</author>
<author>
<name sortKey="Gao, Zhiqian" sort="Gao, Zhiqian" uniqKey="Gao Z" first="Zhiqian" last="Gao">Zhiqian Gao</name>
</author>
<author>
<name sortKey="Su, Xue Feng" sort="Su, Xue Feng" uniqKey="Su X" first="Xue-Feng" last="Su">Xue-Feng Su</name>
</author>
<author>
<name sortKey="Nie, Hong Guang" sort="Nie, Hong Guang" uniqKey="Nie H" first="Hong-Guang" last="Nie">Hong-Guang Nie</name>
</author>
<author>
<name sortKey="Jiang, Yi" sort="Jiang, Yi" uniqKey="Jiang Y" first="Yi" last="Jiang">Yi Jiang</name>
</author>
<author>
<name sortKey="Peng, Ji Bin" sort="Peng, Ji Bin" uniqKey="Peng J" first="Ji-Bin" last="Peng">Ji-Bin Peng</name>
</author>
<author>
<name sortKey="He, Yu Xian" sort="He, Yu Xian" uniqKey="He Y" first="Yu-Xian" last="He">Yu-Xian He</name>
</author>
<author>
<name sortKey="Liao, Ying" sort="Liao, Ying" uniqKey="Liao Y" first="Ying" last="Liao">Ying Liao</name>
</author>
<author>
<name sortKey="Zhou, Yong Jian" sort="Zhou, Yong Jian" uniqKey="Zhou Y" first="Yong-Jian" last="Zhou">Yong-Jian Zhou</name>
</author>
<author>
<name sortKey="Tousson, Albert" sort="Tousson, Albert" uniqKey="Tousson A" first="Albert" last="Tousson">Albert Tousson</name>
</author>
<author>
<name sortKey="Matalon, Sadis" sort="Matalon, Sadis" uniqKey="Matalon S" first="Sadis" last="Matalon">Sadis Matalon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19112100</idno>
<idno type="pmid">19112100</idno>
<idno type="doi">10.1152/ajplung.90437.2008</idno>
<idno type="wicri:Area/PubMed/Corpus">001990</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001990</idno>
<idno type="wicri:Area/PubMed/Curation">001990</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001990</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001796</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001796</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms.</title>
<author>
<name sortKey="Ji, Hong Long" sort="Ji, Hong Long" uniqKey="Ji H" first="Hong-Long" last="Ji">Hong-Long Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Anesthesiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35233-6810, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anesthesiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35233-6810</wicri:regionArea>
<wicri:noRegion>Alabama 35233-6810</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Weifeng" sort="Song, Weifeng" uniqKey="Song W" first="Weifeng" last="Song">Weifeng Song</name>
</author>
<author>
<name sortKey="Gao, Zhiqian" sort="Gao, Zhiqian" uniqKey="Gao Z" first="Zhiqian" last="Gao">Zhiqian Gao</name>
</author>
<author>
<name sortKey="Su, Xue Feng" sort="Su, Xue Feng" uniqKey="Su X" first="Xue-Feng" last="Su">Xue-Feng Su</name>
</author>
<author>
<name sortKey="Nie, Hong Guang" sort="Nie, Hong Guang" uniqKey="Nie H" first="Hong-Guang" last="Nie">Hong-Guang Nie</name>
</author>
<author>
<name sortKey="Jiang, Yi" sort="Jiang, Yi" uniqKey="Jiang Y" first="Yi" last="Jiang">Yi Jiang</name>
</author>
<author>
<name sortKey="Peng, Ji Bin" sort="Peng, Ji Bin" uniqKey="Peng J" first="Ji-Bin" last="Peng">Ji-Bin Peng</name>
</author>
<author>
<name sortKey="He, Yu Xian" sort="He, Yu Xian" uniqKey="He Y" first="Yu-Xian" last="He">Yu-Xian He</name>
</author>
<author>
<name sortKey="Liao, Ying" sort="Liao, Ying" uniqKey="Liao Y" first="Ying" last="Liao">Ying Liao</name>
</author>
<author>
<name sortKey="Zhou, Yong Jian" sort="Zhou, Yong Jian" uniqKey="Zhou Y" first="Yong-Jian" last="Zhou">Yong-Jian Zhou</name>
</author>
<author>
<name sortKey="Tousson, Albert" sort="Tousson, Albert" uniqKey="Tousson A" first="Albert" last="Tousson">Albert Tousson</name>
</author>
<author>
<name sortKey="Matalon, Sadis" sort="Matalon, Sadis" uniqKey="Matalon S" first="Sadis" last="Matalon">Sadis Matalon</name>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Lung cellular and molecular physiology</title>
<idno type="ISSN">1040-0605</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acute Lung Injury (etiology)</term>
<term>Amiloride (pharmacology)</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Endocytosis</term>
<term>Enzyme Activation</term>
<term>Epithelial Sodium Channels (genetics)</term>
<term>Epithelial Sodium Channels (metabolism)</term>
<term>Exocytosis</term>
<term>Female</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Isoenzymes (antagonists & inhibitors)</term>
<term>Isoenzymes (metabolism)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Oocytes (metabolism)</term>
<term>Patch-Clamp Techniques</term>
<term>Protein Kinase C (antagonists & inhibitors)</term>
<term>Protein Kinase C (metabolism)</term>
<term>Protein Kinase Inhibitors (pharmacology)</term>
<term>Pulmonary Edema (etiology)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Transfection</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
<term>Xenopus</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Amiloride (pharmacologie)</term>
<term>Animaux</term>
<term>Canaux sodium épithéliaux (génétique)</term>
<term>Canaux sodium épithéliaux (métabolisme)</term>
<term>Endocytose</term>
<term>Exocytose</term>
<term>Expression des gènes</term>
<term>Femelle</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (génétique)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Humains</term>
<term>Inhibiteurs de protéines kinases (pharmacologie)</term>
<term>Isoenzymes (antagonistes et inhibiteurs)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Lignée cellulaire</term>
<term>Lésion pulmonaire aigüe (étiologie)</term>
<term>Oedème pulmonaire (étiologie)</term>
<term>Ovocytes (métabolisme)</term>
<term>Protéine kinase C (antagonistes et inhibiteurs)</term>
<term>Protéine kinase C (métabolisme)</term>
<term>Protéines de l'enveloppe virale (génétique)</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines virales (génétique)</term>
<term>Protéines virales (métabolisme)</term>
<term>Techniques de patch-clamp</term>
<term>Techniques in vitro</term>
<term>Transfection</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (métabolisme)</term>
<term>Virus du SRAS (pathogénicité)</term>
<term>Xenopus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Isoenzymes</term>
<term>Protein Kinase C</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Epithelial Sodium Channels</term>
<term>Membrane Glycoproteins</term>
<term>Recombinant Proteins</term>
<term>Viral Envelope Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Epithelial Sodium Channels</term>
<term>Isoenzymes</term>
<term>Membrane Glycoproteins</term>
<term>Protein Kinase C</term>
<term>Recombinant Proteins</term>
<term>Viral Envelope Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Amiloride</term>
<term>Protein Kinase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Isoenzymes</term>
<term>Protéine kinase C</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Acute Lung Injury</term>
<term>Pulmonary Edema</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Canaux sodium épithéliaux</term>
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
<term>Protéines recombinantes</term>
<term>Protéines virales</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Oocytes</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Canaux sodium épithéliaux</term>
<term>Glycoprotéines membranaires</term>
<term>Isoenzymes</term>
<term>Ovocytes</term>
<term>Protéine kinase C</term>
<term>Protéines de l'enveloppe virale</term>
<term>Protéines recombinantes</term>
<term>Protéines virales</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Amiloride</term>
<term>Inhibiteurs de protéines kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Lésion pulmonaire aigüe</term>
<term>Oedème pulmonaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Endocytosis</term>
<term>Enzyme Activation</term>
<term>Exocytosis</term>
<term>Female</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Patch-Clamp Techniques</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Transfection</term>
<term>Xenopus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Endocytose</term>
<term>Exocytose</term>
<term>Expression des gènes</term>
<term>Femelle</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Techniques de patch-clamp</term>
<term>Techniques in vitro</term>
<term>Transfection</term>
<term>Xenopus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Among the multiple organ disorders caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), acute lung failure following atypical pneumonia is the most serious and often fatal event. We hypothesized that two of the hydrophilic structural coronoviral proteins (S and E) would regulate alveolar fluid clearance by decreasing the cell surface expression and activity of amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC), the rate-limiting protein in transepithelial Na(+) vectorial transport across distal lung epithelial cells. Coexpression of either S or E protein with human alpha-, beta-, and gamma-ENaC in Xenopus oocytes led to significant decreases of both amiloride-sensitive Na(+) currents and gamma-ENaC protein levels at their plasma membranes. S and E proteins decreased the rate of ENaC exocytosis and either had no effect (S) or decreased (E) rates of endocytosis. No direct interactions among SARS-CoV E protein with either alpha- or gamma-ENaC were indentified. Instead, the downregulation of ENaC activity by SARS proteins was partially or completely restored by administration of inhibitors of PKCalpha/beta1 and PKCzeta. Consistent with the whole cell data, expression of S and E proteins decreased ENaC single-channel activity in oocytes, and these effects were partially abrogated by PKCalpha/beta1 inhibitors. Finally, transfection of human airway epithelial (H441) cells with SARS E protein decreased whole cell amiloride-sensitive currents. These findings indicate that lung edema in SARS infection may be due at least in part to activation of PKC by SARS proteins, leading to decreasing levels and activity of ENaC at the apical surfaces of lung epithelial cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19112100</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1040-0605</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>296</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Lung cellular and molecular physiology</Title>
<ISOAbbreviation>Am. J. Physiol. Lung Cell Mol. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms.</ArticleTitle>
<Pagination>
<MedlinePgn>L372-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajplung.90437.2008</ELocationID>
<Abstract>
<AbstractText>Among the multiple organ disorders caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), acute lung failure following atypical pneumonia is the most serious and often fatal event. We hypothesized that two of the hydrophilic structural coronoviral proteins (S and E) would regulate alveolar fluid clearance by decreasing the cell surface expression and activity of amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC), the rate-limiting protein in transepithelial Na(+) vectorial transport across distal lung epithelial cells. Coexpression of either S or E protein with human alpha-, beta-, and gamma-ENaC in Xenopus oocytes led to significant decreases of both amiloride-sensitive Na(+) currents and gamma-ENaC protein levels at their plasma membranes. S and E proteins decreased the rate of ENaC exocytosis and either had no effect (S) or decreased (E) rates of endocytosis. No direct interactions among SARS-CoV E protein with either alpha- or gamma-ENaC were indentified. Instead, the downregulation of ENaC activity by SARS proteins was partially or completely restored by administration of inhibitors of PKCalpha/beta1 and PKCzeta. Consistent with the whole cell data, expression of S and E proteins decreased ENaC single-channel activity in oocytes, and these effects were partially abrogated by PKCalpha/beta1 inhibitors. Finally, transfection of human airway epithelial (H441) cells with SARS E protein decreased whole cell amiloride-sensitive currents. These findings indicate that lung edema in SARS infection may be due at least in part to activation of PKC by SARS proteins, leading to decreasing levels and activity of ENaC at the apical surfaces of lung epithelial cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Hong-Long</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>Department of Anesthesiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35233-6810, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Weifeng</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Zhiqian</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Xue-Feng</ForeName>
<Initials>XF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nie</LastName>
<ForeName>Hong-Guang</ForeName>
<Initials>HG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Ji-Bin</ForeName>
<Initials>JB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Yu-Xian</ForeName>
<Initials>YX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yong-Jian</ForeName>
<Initials>YJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tousson</LastName>
<ForeName>Albert</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matalon</LastName>
<ForeName>Sadis</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL087017</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL31197</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL87017</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 ES017218</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>12</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Lung Cell Mol Physiol</MedlineTA>
<NlmUniqueID>100901229</NlmUniqueID>
<ISSNLinking>1040-0605</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053503">Epithelial Sodium Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047428">Protein Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7DZO8EB0Z3</RegistryNumber>
<NameOfSubstance UI="D000584">Amiloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.13</RegistryNumber>
<NameOfSubstance UI="D011493">Protein Kinase C</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055371" MajorTopicYN="N">Acute Lung Injury</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000584" MajorTopicYN="N">Amiloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004705" MajorTopicYN="N">Endocytosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053503" MajorTopicYN="N">Epithelial Sodium Channels</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005089" MajorTopicYN="N">Exocytosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009865" MajorTopicYN="N">Oocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018408" MajorTopicYN="N">Patch-Clamp Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011493" MajorTopicYN="N">Protein Kinase C</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047428" MajorTopicYN="N">Protein Kinase Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011654" MajorTopicYN="N">Pulmonary Edema</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014981" MajorTopicYN="N">Xenopus</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19112100</ArticleId>
<ArticleId IdType="pii">90437.2008</ArticleId>
<ArticleId IdType="doi">10.1152/ajplung.90437.2008</ArticleId>
<ArticleId IdType="pmc">PMC2660211</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Signal. 1998 Sep;10(8):529-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9794251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2009 May;40(5):588-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Dec 3;325(1):374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Dec 5;330(1):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2005 Oct;33(4):343-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Physiol Pharmacol. 2005 Nov;83(11):977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16391706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2006 Feb 1;173(3):334-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2006 Mar 15;173(6):673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 24;281(12):8233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16423824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4964-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 7;281(14):8997-9000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5817-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2805-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16477034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 1;281(48):36960-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):3714-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2007 Aug;293(2):L281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17435077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Oct;37(4):379-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17541010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 31;274(53):37693-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10608827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2000 Feb;278(2):C277-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2000 May;115(5):559-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 18;275(33):25760-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10829029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10282-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10920189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 8;275(36):27947-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Gene Ther. 2000 Nov 1;11(16):2231-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11084680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2001 Apr;280(4):L646-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2001 May;163(6):1376-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11371404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1966-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 8;277(10):8395-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11748227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2002 Jul;82(3):569-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2002 Nov;93(5):1852-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12381774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2002 Dec;120(6):897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12451057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 20;277(51):50098-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12397059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Apr;111(7):1057-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2003 Aug;285(2):L443-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12704021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2004 Jan;286(1):L112-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12948936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):8428-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14660613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15121635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CRC Crit Rev Biochem. 1987;22(4):317-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2449311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Feb 3;367(6462):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1994 Apr;266(4 Pt 1):C1061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7513953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1995 Aug;269(2 Pt 1):C511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7653534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8418-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7667305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1996 Mar;12(3):325-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 1996 Jul;108(1):49-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8817384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1997 Mar;272(3 Pt 1):L407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9124596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 1997 Jun;109(6):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9222895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Mar;274(3 Pt 1):L369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9530172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Oct;37(4):375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17872592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2008 Sep;62(3):437-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18565970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1999;61:627-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10099704</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gao, Zhiqian" sort="Gao, Zhiqian" uniqKey="Gao Z" first="Zhiqian" last="Gao">Zhiqian Gao</name>
<name sortKey="He, Yu Xian" sort="He, Yu Xian" uniqKey="He Y" first="Yu-Xian" last="He">Yu-Xian He</name>
<name sortKey="Jiang, Yi" sort="Jiang, Yi" uniqKey="Jiang Y" first="Yi" last="Jiang">Yi Jiang</name>
<name sortKey="Liao, Ying" sort="Liao, Ying" uniqKey="Liao Y" first="Ying" last="Liao">Ying Liao</name>
<name sortKey="Matalon, Sadis" sort="Matalon, Sadis" uniqKey="Matalon S" first="Sadis" last="Matalon">Sadis Matalon</name>
<name sortKey="Nie, Hong Guang" sort="Nie, Hong Guang" uniqKey="Nie H" first="Hong-Guang" last="Nie">Hong-Guang Nie</name>
<name sortKey="Peng, Ji Bin" sort="Peng, Ji Bin" uniqKey="Peng J" first="Ji-Bin" last="Peng">Ji-Bin Peng</name>
<name sortKey="Song, Weifeng" sort="Song, Weifeng" uniqKey="Song W" first="Weifeng" last="Song">Weifeng Song</name>
<name sortKey="Su, Xue Feng" sort="Su, Xue Feng" uniqKey="Su X" first="Xue-Feng" last="Su">Xue-Feng Su</name>
<name sortKey="Tousson, Albert" sort="Tousson, Albert" uniqKey="Tousson A" first="Albert" last="Tousson">Albert Tousson</name>
<name sortKey="Zhou, Yong Jian" sort="Zhou, Yong Jian" uniqKey="Zhou Y" first="Yong-Jian" last="Zhou">Yong-Jian Zhou</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Ji, Hong Long" sort="Ji, Hong Long" uniqKey="Ji H" first="Hong-Long" last="Ji">Hong-Long Ji</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001796 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001796 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19112100
   |texte=   SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19112100" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021