Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals.

Identifieur interne : 001792 ( PubMed/Checkpoint ); précédent : 001791; suivant : 001793

Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals.

Auteurs : Junbao Yang [États-Unis] ; Eddie James ; Michelle Roti ; Laurie Huston ; John A. Gebe ; William W. Kwok

Source :

RBID : pubmed:19050106

Descripteurs français

English descriptors

Abstract

Identification of dominant T cell epitopes within newly emerging and re-emerging infectious organisms is valuable in understanding pathogenic immune responses and potential vaccine designs. However, difficulties in obtaining samples from patients or convalescent subjects have hampered research in this direction. We demonstrated a strategy, tetramer-guided epitope mapping, that specific CD4+ T cell epitopes can be identified by using PBMC from subjects that have not been exposed to the infectious organism. Sixteen HLA-DR0401- and 14 HLA-DR0701-restricted epitopes within spike protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) were identified. Among these, spike protein residues 159-171, 166-178, 449-461 and 1083-1097 were identified to contain naturally processed immunodominant epitopes based on strong in vitro T cell responses of PBMC (as assayed by tetramer staining) to intact spike protein stimulation. These immunodominant epitopes were confirmed in vivo in HLA-DR0401 transgenic mice by immunizing with spike protein. Furthermore, the epitope-specific T cells from naive donors secreted IFN-gamma and IL-13 upon re-stimulation with corresponding tetramers. Our study demonstrates a strategy to determine potential immunodominant epitopes for emerging infectious pathogens prior to their epidemic circulation.

DOI: 10.1093/intimm/dxn124
PubMed: 19050106


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19050106

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals.</title>
<author>
<name sortKey="Yang, Junbao" sort="Yang, Junbao" uniqKey="Yang J" first="Junbao" last="Yang">Junbao Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="James, Eddie" sort="James, Eddie" uniqKey="James E" first="Eddie" last="James">Eddie James</name>
</author>
<author>
<name sortKey="Roti, Michelle" sort="Roti, Michelle" uniqKey="Roti M" first="Michelle" last="Roti">Michelle Roti</name>
</author>
<author>
<name sortKey="Huston, Laurie" sort="Huston, Laurie" uniqKey="Huston L" first="Laurie" last="Huston">Laurie Huston</name>
</author>
<author>
<name sortKey="Gebe, John A" sort="Gebe, John A" uniqKey="Gebe J" first="John A" last="Gebe">John A. Gebe</name>
</author>
<author>
<name sortKey="Kwok, William W" sort="Kwok, William W" uniqKey="Kwok W" first="William W" last="Kwok">William W. Kwok</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19050106</idno>
<idno type="pmid">19050106</idno>
<idno type="doi">10.1093/intimm/dxn124</idno>
<idno type="wicri:Area/PubMed/Corpus">001A21</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A21</idno>
<idno type="wicri:Area/PubMed/Curation">001A21</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A21</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001792</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001792</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals.</title>
<author>
<name sortKey="Yang, Junbao" sort="Yang, Junbao" uniqKey="Yang J" first="Junbao" last="Yang">Junbao Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="James, Eddie" sort="James, Eddie" uniqKey="James E" first="Eddie" last="James">Eddie James</name>
</author>
<author>
<name sortKey="Roti, Michelle" sort="Roti, Michelle" uniqKey="Roti M" first="Michelle" last="Roti">Michelle Roti</name>
</author>
<author>
<name sortKey="Huston, Laurie" sort="Huston, Laurie" uniqKey="Huston L" first="Laurie" last="Huston">Laurie Huston</name>
</author>
<author>
<name sortKey="Gebe, John A" sort="Gebe, John A" uniqKey="Gebe J" first="John A" last="Gebe">John A. Gebe</name>
</author>
<author>
<name sortKey="Kwok, William W" sort="Kwok, William W" uniqKey="Kwok W" first="William W" last="Kwok">William W. Kwok</name>
</author>
</analytic>
<series>
<title level="j">International immunology</title>
<idno type="eISSN">1460-2377</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>CD4-Positive T-Lymphocytes (immunology)</term>
<term>CD4-Positive T-Lymphocytes (metabolism)</term>
<term>CD4-Positive T-Lymphocytes (virology)</term>
<term>Cell Proliferation</term>
<term>Cytokines (biosynthesis)</term>
<term>Cytokines (immunology)</term>
<term>Epitope Mapping</term>
<term>Histocompatibility Antigens Class II (immunology)</term>
<term>Histocompatibility Antigens Class II (metabolism)</term>
<term>Humans</term>
<term>Immunodominant Epitopes (immunology)</term>
<term>Immunodominant Epitopes (metabolism)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Molecular Sequence Data</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (metabolism)</term>
<term>Severe Acute Respiratory Syndrome (epidemiology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (immunology)</term>
<term>Viral Envelope Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Antigènes d'histocompatibilité de classe II (immunologie)</term>
<term>Antigènes d'histocompatibilité de classe II (métabolisme)</term>
<term>Cartographie épitopique</term>
<term>Cytokines (biosynthèse)</term>
<term>Cytokines (immunologie)</term>
<term>Données de séquences moléculaires</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (immunologie)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Humains</term>
<term>Lymphocytes T CD4+ (immunologie)</term>
<term>Lymphocytes T CD4+ (métabolisme)</term>
<term>Lymphocytes T CD4+ (virologie)</term>
<term>Prolifération cellulaire</term>
<term>Protéines de l'enveloppe virale (immunologie)</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Souris</term>
<term>Souris transgéniques</term>
<term>Syndrome respiratoire aigu sévère (immunologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Syndrome respiratoire aigu sévère (épidémiologie)</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS (immunologie)</term>
<term>Virus du SRAS (métabolisme)</term>
<term>Épitopes immunodominants (immunologie)</term>
<term>Épitopes immunodominants (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Antigènes d'histocompatibilité de classe II</term>
<term>Cytokines</term>
<term>Glycoprotéines membranaires</term>
<term>Lymphocytes T CD4+</term>
<term>Protéines de l'enveloppe virale</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Virus du SRAS</term>
<term>Épitopes immunodominants</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>Cytokines</term>
<term>Histocompatibility Antigens Class II</term>
<term>Immunodominant Epitopes</term>
<term>Membrane Glycoproteins</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>Histocompatibility Antigens Class II</term>
<term>Immunodominant Epitopes</term>
<term>Membrane Glycoproteins</term>
<term>SARS Virus</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigènes d'histocompatibilité de classe II</term>
<term>Glycoprotéines membranaires</term>
<term>Lymphocytes T CD4+</term>
<term>Protéines de l'enveloppe virale</term>
<term>Virus du SRAS</term>
<term>Épitopes immunodominants</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Lymphocytes T CD4+</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Proliferation</term>
<term>Epitope Mapping</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Molecular Sequence Data</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cartographie épitopique</term>
<term>Données de séquences moléculaires</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Prolifération cellulaire</term>
<term>Souris</term>
<term>Souris transgéniques</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Identification of dominant T cell epitopes within newly emerging and re-emerging infectious organisms is valuable in understanding pathogenic immune responses and potential vaccine designs. However, difficulties in obtaining samples from patients or convalescent subjects have hampered research in this direction. We demonstrated a strategy, tetramer-guided epitope mapping, that specific CD4+ T cell epitopes can be identified by using PBMC from subjects that have not been exposed to the infectious organism. Sixteen HLA-DR0401- and 14 HLA-DR0701-restricted epitopes within spike protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) were identified. Among these, spike protein residues 159-171, 166-178, 449-461 and 1083-1097 were identified to contain naturally processed immunodominant epitopes based on strong in vitro T cell responses of PBMC (as assayed by tetramer staining) to intact spike protein stimulation. These immunodominant epitopes were confirmed in vivo in HLA-DR0401 transgenic mice by immunizing with spike protein. Furthermore, the epitope-specific T cells from naive donors secreted IFN-gamma and IL-13 upon re-stimulation with corresponding tetramers. Our study demonstrates a strategy to determine potential immunodominant epitopes for emerging infectious pathogens prior to their epidemic circulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19050106</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2377</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>International immunology</Title>
<ISOAbbreviation>Int. Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals.</ArticleTitle>
<Pagination>
<MedlinePgn>63-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/intimm/dxn124</ELocationID>
<Abstract>
<AbstractText>Identification of dominant T cell epitopes within newly emerging and re-emerging infectious organisms is valuable in understanding pathogenic immune responses and potential vaccine designs. However, difficulties in obtaining samples from patients or convalescent subjects have hampered research in this direction. We demonstrated a strategy, tetramer-guided epitope mapping, that specific CD4+ T cell epitopes can be identified by using PBMC from subjects that have not been exposed to the infectious organism. Sixteen HLA-DR0401- and 14 HLA-DR0701-restricted epitopes within spike protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) were identified. Among these, spike protein residues 159-171, 166-178, 449-461 and 1083-1097 were identified to contain naturally processed immunodominant epitopes based on strong in vitro T cell responses of PBMC (as assayed by tetramer staining) to intact spike protein stimulation. These immunodominant epitopes were confirmed in vivo in HLA-DR0401 transgenic mice by immunizing with spike protein. Furthermore, the epitope-specific T cells from naive donors secreted IFN-gamma and IL-13 upon re-stimulation with corresponding tetramers. Our study demonstrates a strategy to determine potential immunodominant epitopes for emerging infectious pathogens prior to their epidemic circulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Junbao</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>James</LastName>
<ForeName>Eddie</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roti</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huston</LastName>
<ForeName>Laurie</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gebe</LastName>
<ForeName>John A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kwok</LastName>
<ForeName>William W</ForeName>
<Initials>WW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>12</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int Immunol</MedlineTA>
<NlmUniqueID>8916182</NlmUniqueID>
<ISSNLinking>0953-8178</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000949">Histocompatibility Antigens Class II</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016056">Immunodominant Epitopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015496" MajorTopicYN="N">CD4-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018604" MajorTopicYN="N">Epitope Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000949" MajorTopicYN="N">Histocompatibility Antigens Class II</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016056" MajorTopicYN="N">Immunodominant Epitopes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19050106</ArticleId>
<ArticleId IdType="pii">dxn124</ArticleId>
<ArticleId IdType="doi">10.1093/intimm/dxn124</ArticleId>
<ArticleId IdType="pmc">PMC2638843</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5612-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Oct;10(10):1774-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15504263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1996 Dec;34(12):3007-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8940439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1998 Feb;36(2):539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9466772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Jul 1;175(1):591-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15972696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1999 Dec;104(12):R63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10606632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2001 Jun 1;166(11):6665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11359821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(24):12491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12438575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Feb 1;180(3):1758-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18209073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 21;451(7181):990-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Mar 1;176(5):2781-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16493034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Feb;80(3):1302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2008 Oct;76(10):4538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18678674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 May 26;344(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16630549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2006 Jul;120(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2006 Aug;296(4-5):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16446113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Aug 15;177(4):2138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16887973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2007 Apr;1102:26-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(11):6079-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Nov 25;368(2):317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 28;302(5650):1504-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Dec 6;362(9399):1895-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14667748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2004 Jul 1;104(1):200-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016646</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gebe, John A" sort="Gebe, John A" uniqKey="Gebe J" first="John A" last="Gebe">John A. Gebe</name>
<name sortKey="Huston, Laurie" sort="Huston, Laurie" uniqKey="Huston L" first="Laurie" last="Huston">Laurie Huston</name>
<name sortKey="James, Eddie" sort="James, Eddie" uniqKey="James E" first="Eddie" last="James">Eddie James</name>
<name sortKey="Kwok, William W" sort="Kwok, William W" uniqKey="Kwok W" first="William W" last="Kwok">William W. Kwok</name>
<name sortKey="Roti, Michelle" sort="Roti, Michelle" uniqKey="Roti M" first="Michelle" last="Roti">Michelle Roti</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Yang, Junbao" sort="Yang, Junbao" uniqKey="Yang J" first="Junbao" last="Yang">Junbao Yang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001792 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001792 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19050106
   |texte=   Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19050106" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021