Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronavirus genomics and bioinformatics analysis.

Identifieur interne : 001696 ( PubMed/Checkpoint ); précédent : 001695; suivant : 001697

Coronavirus genomics and bioinformatics analysis.

Auteurs : Patrick C Y. Woo [Hong Kong] ; Yi Huang ; Susanna K P. Lau ; Kwok-Yung Yuen

Source :

RBID : pubmed:21994708

Abstract

The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb) among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid) and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4×10(-4) to 2×10(-2) substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV), between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV) type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1). Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.

DOI: 10.3390/v2081803
PubMed: 21994708


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21994708

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronavirus genomics and bioinformatics analysis.</title>
<author>
<name sortKey="Woo, Patrick C Y" sort="Woo, Patrick C Y" uniqKey="Woo P" first="Patrick C Y" last="Woo">Patrick C Y. Woo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; China; E-Mail: kyyuen@hkucc.hku.hk.</nlm:affiliation>
<country wicri:rule="url">Hong Kong</country>
<wicri:regionArea>State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong</wicri:regionArea>
<wicri:noRegion>The University of Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yi" sort="Huang, Yi" uniqKey="Huang Y" first="Yi" last="Huang">Yi Huang</name>
</author>
<author>
<name sortKey="Lau, Susanna K P" sort="Lau, Susanna K P" uniqKey="Lau S" first="Susanna K P" last="Lau">Susanna K P. Lau</name>
</author>
<author>
<name sortKey="Yuen, Kwok Yung" sort="Yuen, Kwok Yung" uniqKey="Yuen K" first="Kwok-Yung" last="Yuen">Kwok-Yung Yuen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:21994708</idno>
<idno type="pmid">21994708</idno>
<idno type="doi">10.3390/v2081803</idno>
<idno type="wicri:Area/PubMed/Corpus">001656</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001656</idno>
<idno type="wicri:Area/PubMed/Curation">001656</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001656</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001696</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001696</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coronavirus genomics and bioinformatics analysis.</title>
<author>
<name sortKey="Woo, Patrick C Y" sort="Woo, Patrick C Y" uniqKey="Woo P" first="Patrick C Y" last="Woo">Patrick C Y. Woo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; China; E-Mail: kyyuen@hkucc.hku.hk.</nlm:affiliation>
<country wicri:rule="url">Hong Kong</country>
<wicri:regionArea>State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong</wicri:regionArea>
<wicri:noRegion>The University of Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yi" sort="Huang, Yi" uniqKey="Huang Y" first="Yi" last="Huang">Yi Huang</name>
</author>
<author>
<name sortKey="Lau, Susanna K P" sort="Lau, Susanna K P" uniqKey="Lau S" first="Susanna K P" last="Lau">Susanna K P. Lau</name>
</author>
<author>
<name sortKey="Yuen, Kwok Yung" sort="Yuen, Kwok Yung" uniqKey="Yuen K" first="Kwok-Yung" last="Yuen">Kwok-Yung Yuen</name>
</author>
</analytic>
<series>
<title level="j">Viruses</title>
<idno type="eISSN">1999-4915</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb) among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid) and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4×10(-4) to 2×10(-2) substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV), between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV) type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1). Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">21994708</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1999-4915</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2010</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Viruses</Title>
<ISOAbbreviation>Viruses</ISOAbbreviation>
</Journal>
<ArticleTitle>Coronavirus genomics and bioinformatics analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>1804-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/v2081803</ELocationID>
<Abstract>
<AbstractText>The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb) among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid) and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4×10(-4) to 2×10(-2) substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV), between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV) type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1). Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Woo</LastName>
<ForeName>Patrick C Y</ForeName>
<Initials>PC</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; China; E-Mail: kyyuen@hkucc.hku.hk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lau</LastName>
<ForeName>Susanna K P</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuen</LastName>
<ForeName>Kwok-Yung</ForeName>
<Initials>KY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Viruses</MedlineTA>
<NlmUniqueID>101509722</NlmUniqueID>
<ISSNLinking>1999-4915</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bioinformatics</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">genome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21994708</ArticleId>
<ArticleId IdType="doi">10.3390/v2081803</ArticleId>
<ArticleId IdType="pii">viruses-02-01804</ArticleId>
<ArticleId IdType="pmc">PMC3185738</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1985 Nov;56(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2997467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1403-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Dec 15;364(5):964-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):7136-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):4012-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1994 Jul;75 ( Pt 7):1789-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8021609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 May;62(5):1810-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2833625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Apr 15;28(8):1676-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10734185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Dec 20;369(2):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17881030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 1993 Jul;36(1-2):1-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8236772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(8):3863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 2005;49(10):899-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 Mar;86(Pt 3):719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Dec 1;192(11):1898-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):61-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Nov 10;213(2):569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7491781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 1996;40(6):425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8839428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):908-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Sep;190(1):92-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1326823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1995;140(3):469-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7733820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2009 Oct;234(10):1117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Oct 25;367(2):428-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 28;302(5650):1504-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D504-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17913743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Oct 1;212(2):622-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7571432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 May;72(5):4508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9557750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6212-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Dec 5;369(1):92-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Oct;166(2):415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2845655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jul 20;351(1):180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 May;89(Pt 5):1282-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2004 Jun 28;4:21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15222897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):7270-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Feb;78(3):1602-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(10):5084-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2469-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Feb;186(2):676-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1310191</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hong Kong</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Huang, Yi" sort="Huang, Yi" uniqKey="Huang Y" first="Yi" last="Huang">Yi Huang</name>
<name sortKey="Lau, Susanna K P" sort="Lau, Susanna K P" uniqKey="Lau S" first="Susanna K P" last="Lau">Susanna K P. Lau</name>
<name sortKey="Yuen, Kwok Yung" sort="Yuen, Kwok Yung" uniqKey="Yuen K" first="Kwok-Yung" last="Yuen">Kwok-Yung Yuen</name>
</noCountry>
<country name="Hong Kong">
<noRegion>
<name sortKey="Woo, Patrick C Y" sort="Woo, Patrick C Y" uniqKey="Woo P" first="Patrick C Y" last="Woo">Patrick C Y. Woo</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001696 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001696 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21994708
   |texte=   Coronavirus genomics and bioinformatics analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21994708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021