Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of air temperature and relative humidity on coronavirus survival on surfaces.

Identifieur interne : 001684 ( PubMed/Checkpoint ); précédent : 001683; suivant : 001685

Effects of air temperature and relative humidity on coronavirus survival on surfaces.

Auteurs : Lisa M. Casanova [États-Unis] ; Soyoung Jeon ; William A. Rutala ; David J. Weber ; Mark D. Sobsey

Source :

RBID : pubmed:20228108

Descripteurs français

English descriptors

Abstract

Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4 degrees C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20 degrees C than at 4 degrees C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40 degrees C than at 20 degrees C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.

DOI: 10.1128/AEM.02291-09
PubMed: 20228108


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20228108

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of air temperature and relative humidity on coronavirus survival on surfaces.</title>
<author>
<name sortKey="Casanova, Lisa M" sort="Casanova, Lisa M" uniqKey="Casanova L" first="Lisa M" last="Casanova">Lisa M. Casanova</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. casanova@unc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Soyoung" sort="Jeon, Soyoung" uniqKey="Jeon S" first="Soyoung" last="Jeon">Soyoung Jeon</name>
</author>
<author>
<name sortKey="Rutala, William A" sort="Rutala, William A" uniqKey="Rutala W" first="William A" last="Rutala">William A. Rutala</name>
</author>
<author>
<name sortKey="Weber, David J" sort="Weber, David J" uniqKey="Weber D" first="David J" last="Weber">David J. Weber</name>
</author>
<author>
<name sortKey="Sobsey, Mark D" sort="Sobsey, Mark D" uniqKey="Sobsey M" first="Mark D" last="Sobsey">Mark D. Sobsey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20228108</idno>
<idno type="pmid">20228108</idno>
<idno type="doi">10.1128/AEM.02291-09</idno>
<idno type="wicri:Area/PubMed/Corpus">001733</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001733</idno>
<idno type="wicri:Area/PubMed/Curation">001733</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001733</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001684</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001684</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of air temperature and relative humidity on coronavirus survival on surfaces.</title>
<author>
<name sortKey="Casanova, Lisa M" sort="Casanova, Lisa M" uniqKey="Casanova L" first="Lisa M" last="Casanova">Lisa M. Casanova</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. casanova@unc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Soyoung" sort="Jeon, Soyoung" uniqKey="Jeon S" first="Soyoung" last="Jeon">Soyoung Jeon</name>
</author>
<author>
<name sortKey="Rutala, William A" sort="Rutala, William A" uniqKey="Rutala W" first="William A" last="Rutala">William A. Rutala</name>
</author>
<author>
<name sortKey="Weber, David J" sort="Weber, David J" uniqKey="Weber D" first="David J" last="Weber">David J. Weber</name>
</author>
<author>
<name sortKey="Sobsey, Mark D" sort="Sobsey, Mark D" uniqKey="Sobsey M" first="Mark D" last="Sobsey">Mark D. Sobsey</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air</term>
<term>Coronavirus</term>
<term>Humidity</term>
<term>Murine hepatitis virus</term>
<term>Temperature</term>
<term>Transmissible gastroenteritis virus</term>
<term>Virus Inactivation</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Air</term>
<term>Coronavirus</term>
<term>Humidité</term>
<term>Inactivation virale</term>
<term>Température</term>
<term>Virus de l'hépatite murine</term>
<term>Virus de la gastroentérite transmissible</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Air</term>
<term>Coronavirus</term>
<term>Humidity</term>
<term>Murine hepatitis virus</term>
<term>Temperature</term>
<term>Transmissible gastroenteritis virus</term>
<term>Virus Inactivation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Air</term>
<term>Coronavirus</term>
<term>Humidité</term>
<term>Inactivation virale</term>
<term>Température</term>
<term>Virus de l'hépatite murine</term>
<term>Virus de la gastroentérite transmissible</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4 degrees C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20 degrees C than at 4 degrees C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40 degrees C than at 20 degrees C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20228108</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl. Environ. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of air temperature and relative humidity on coronavirus survival on surfaces.</ArticleTitle>
<Pagination>
<MedlinePgn>2712-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.02291-09</ELocationID>
<Abstract>
<AbstractText>Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4 degrees C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20 degrees C than at 4 degrees C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40 degrees C than at 20 degrees C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Casanova</LastName>
<ForeName>Lisa M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. casanova@unc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeon</LastName>
<ForeName>Soyoung</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rutala</LastName>
<ForeName>William A</ForeName>
<Initials>WA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weber</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sobsey</LastName>
<ForeName>Mark D</ForeName>
<Initials>MD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 CI000299</GrantID>
<Acronym>CI</Acronym>
<Agency>NCPDCID CDC HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1 U01 CI000299-01</GrantID>
<Acronym>CI</Acronym>
<Agency>NCPDCID CDC HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000388" MajorTopicYN="N">Air</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="Y">Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006813" MajorTopicYN="Y">Humidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005760" MajorTopicYN="N">Transmissible gastroenteritis virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038301" MajorTopicYN="Y">Virus Inactivation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20228108</ArticleId>
<ArticleId IdType="pii">AEM.02291-09</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.02291-09</ArticleId>
<ArticleId IdType="pmc">PMC2863430</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Hosp Infect. 2000 Sep;46(1):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11023724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2009 Feb 15;48(4):438-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19133798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2004 Apr;56 Suppl 2:S64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15110126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 May;10(5):777-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 Sep 1;39(5):652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Sep;10(9):1550-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1974 Jul;24(1):155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4367307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1976;51(4):263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">987765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1982 Jul;146(1):47-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6282993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1985 Dec;66 ( Pt 12):2743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 May;57(5):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1649579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Oct;60(10):3704-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7986043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 1994 Nov;42(2-3):255-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7886936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Jan;64(1):304-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9435082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Mar;65(3):1186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 1993 Feb;23(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11536524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1950 Sep-Oct;87(2):128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14774528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1960 Oct 29;188:430-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13713229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hyg (Lond). 1961 Dec;59:479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13904777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Gesamte Virusforsch. 1963;13:64-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13952881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pathol. 2005 Mar;58(3):276-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15735160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 May 1;191(9):1472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Microbiol Immunol. 2005 Jan;194(1-2):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2005 Dec;11(12):1882-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16485474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2006 Sep;50(3):315-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17039827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Apr;73(8):2748-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2009 Apr;43(7):1893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Jeon, Soyoung" sort="Jeon, Soyoung" uniqKey="Jeon S" first="Soyoung" last="Jeon">Soyoung Jeon</name>
<name sortKey="Rutala, William A" sort="Rutala, William A" uniqKey="Rutala W" first="William A" last="Rutala">William A. Rutala</name>
<name sortKey="Sobsey, Mark D" sort="Sobsey, Mark D" uniqKey="Sobsey M" first="Mark D" last="Sobsey">Mark D. Sobsey</name>
<name sortKey="Weber, David J" sort="Weber, David J" uniqKey="Weber D" first="David J" last="Weber">David J. Weber</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Casanova, Lisa M" sort="Casanova, Lisa M" uniqKey="Casanova L" first="Lisa M" last="Casanova">Lisa M. Casanova</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001684 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001684 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20228108
   |texte=   Effects of air temperature and relative humidity on coronavirus survival on surfaces.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20228108" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021