Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable.

Identifieur interne : 001540 ( PubMed/Checkpoint ); précédent : 001539; suivant : 001541

A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable.

Auteurs : Suzanne N. Stammler [États-Unis] ; Song Cao ; Shi-Jie Chen ; David P. Giedroc

Source :

RBID : pubmed:21799029

Descripteurs français

English descriptors

Abstract

The 3'-untranslated region (UTR) of the group 2 coronavirus mouse hepatitis virus (MHV) genome contains a predicted bulged stem-loop (designated P0ab), a conserved cis-acting pseudoknot (PK), and a more distal stem-loop (designated P2). Base-pairing to create the pseudoknot-forming stem (P1(pk)) is mutually exclusive with formation of stem P0a at the base of the bulged stem-loop; as a result, the two structures cannot be present simultaneously. Herein, we use thermodynamic methods to evaluate the ability of individual subdomains of the 3' UTR to adopt a pseudoknotted conformation. We find that an RNA capable of forming only the predicted PK (58 nt; 3' nucleotides 241-185) adopts the P2 stem-loop with little evidence for P1(pk) pairing in 0.1 M KCl and the absence of Mg(2+); as Mg(2+) or 1 M KCl is added, a new thermal unfolding transition is induced and assignable to P1(pk) pairing. The P1(pk) helix is only marginally stable, ΔG(25) ≈ 1.2 ± 0.3 kcal/mol (5.0 mM Mg(2+), 100 mM K(+)), and unfolded at 37°C. Similar findings characterize an RNA 5' extended through the P0b helix only (89 nt; 294-185). In contrast, an RNA capable of forming either the P0a helix or the pseudoknot (97 nt; 301-185) forms no P1(pk) helix. Thermal unfolding simulations are fully consistent with these experimental findings. These data reveal that the PK forms weakly and only when the competing double-hairpin structure cannot form; in the UTR RNA, the double hairpin is the predominant conformer under all solution conditions.

DOI: 10.1261/rna.2816711
PubMed: 21799029


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21799029

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable.</title>
<author>
<name sortKey="Stammler, Suzanne N" sort="Stammler, Suzanne N" uniqKey="Stammler S" first="Suzanne N" last="Stammler">Suzanne N. Stammler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128</wicri:regionArea>
<wicri:noRegion>Texas 77843-2128</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Song" sort="Cao, Song" uniqKey="Cao S" first="Song" last="Cao">Song Cao</name>
</author>
<author>
<name sortKey="Chen, Shi Jie" sort="Chen, Shi Jie" uniqKey="Chen S" first="Shi-Jie" last="Chen">Shi-Jie Chen</name>
</author>
<author>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P" last="Giedroc">David P. Giedroc</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21799029</idno>
<idno type="pmid">21799029</idno>
<idno type="doi">10.1261/rna.2816711</idno>
<idno type="wicri:Area/PubMed/Corpus">001486</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001486</idno>
<idno type="wicri:Area/PubMed/Curation">001486</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001486</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001540</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001540</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable.</title>
<author>
<name sortKey="Stammler, Suzanne N" sort="Stammler, Suzanne N" uniqKey="Stammler S" first="Suzanne N" last="Stammler">Suzanne N. Stammler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128</wicri:regionArea>
<wicri:noRegion>Texas 77843-2128</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Song" sort="Cao, Song" uniqKey="Cao S" first="Song" last="Cao">Song Cao</name>
</author>
<author>
<name sortKey="Chen, Shi Jie" sort="Chen, Shi Jie" uniqKey="Chen S" first="Shi-Jie" last="Chen">Shi-Jie Chen</name>
</author>
<author>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P" last="Giedroc">David P. Giedroc</name>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="eISSN">1469-9001</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3' Untranslated Regions</term>
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Genome, Viral</term>
<term>Molecular Sequence Data</term>
<term>Murine hepatitis virus (genetics)</term>
<term>Murine hepatitis virus (physiology)</term>
<term>Nucleic Acid Conformation</term>
<term>RNA, Viral (chemistry)</term>
<term>RNA, Viral (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>Thermodynamics</term>
<term>Virus Replication (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral ()</term>
<term>ARN viral (génétique)</term>
<term>Appariement de bases</term>
<term>Conformation d'acide nucléique</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Régions 3' non traduites</term>
<term>Réplication virale (génétique)</term>
<term>Séquence nucléotidique</term>
<term>Thermodynamique</term>
<term>Virus de l'hépatite murine (génétique)</term>
<term>Virus de l'hépatite murine (physiologie)</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>3' Untranslated Regions</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Murine hepatitis virus</term>
<term>SARS Virus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Réplication virale</term>
<term>Virus de l'hépatite murine</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Genome, Viral</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN viral</term>
<term>Appariement de bases</term>
<term>Conformation d'acide nucléique</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Régions 3' non traduites</term>
<term>Séquence nucléotidique</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 3'-untranslated region (UTR) of the group 2 coronavirus mouse hepatitis virus (MHV) genome contains a predicted bulged stem-loop (designated P0ab), a conserved cis-acting pseudoknot (PK), and a more distal stem-loop (designated P2). Base-pairing to create the pseudoknot-forming stem (P1(pk)) is mutually exclusive with formation of stem P0a at the base of the bulged stem-loop; as a result, the two structures cannot be present simultaneously. Herein, we use thermodynamic methods to evaluate the ability of individual subdomains of the 3' UTR to adopt a pseudoknotted conformation. We find that an RNA capable of forming only the predicted PK (58 nt; 3' nucleotides 241-185) adopts the P2 stem-loop with little evidence for P1(pk) pairing in 0.1 M KCl and the absence of Mg(2+); as Mg(2+) or 1 M KCl is added, a new thermal unfolding transition is induced and assignable to P1(pk) pairing. The P1(pk) helix is only marginally stable, ΔG(25) ≈ 1.2 ± 0.3 kcal/mol (5.0 mM Mg(2+), 100 mM K(+)), and unfolded at 37°C. Similar findings characterize an RNA 5' extended through the P0b helix only (89 nt; 294-185). In contrast, an RNA capable of forming either the P0a helix or the pseudoknot (97 nt; 301-185) forms no P1(pk) helix. Thermal unfolding simulations are fully consistent with these experimental findings. These data reveal that the PK forms weakly and only when the competing double-hairpin structure cannot form; in the UTR RNA, the double hairpin is the predominant conformer under all solution conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21799029</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-9001</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2011</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable.</ArticleTitle>
<Pagination>
<MedlinePgn>1747-59</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1261/rna.2816711</ELocationID>
<Abstract>
<AbstractText>The 3'-untranslated region (UTR) of the group 2 coronavirus mouse hepatitis virus (MHV) genome contains a predicted bulged stem-loop (designated P0ab), a conserved cis-acting pseudoknot (PK), and a more distal stem-loop (designated P2). Base-pairing to create the pseudoknot-forming stem (P1(pk)) is mutually exclusive with formation of stem P0a at the base of the bulged stem-loop; as a result, the two structures cannot be present simultaneously. Herein, we use thermodynamic methods to evaluate the ability of individual subdomains of the 3' UTR to adopt a pseudoknotted conformation. We find that an RNA capable of forming only the predicted PK (58 nt; 3' nucleotides 241-185) adopts the P2 stem-loop with little evidence for P1(pk) pairing in 0.1 M KCl and the absence of Mg(2+); as Mg(2+) or 1 M KCl is added, a new thermal unfolding transition is induced and assignable to P1(pk) pairing. The P1(pk) helix is only marginally stable, ΔG(25) ≈ 1.2 ± 0.3 kcal/mol (5.0 mM Mg(2+), 100 mM K(+)), and unfolded at 37°C. Similar findings characterize an RNA 5' extended through the P0b helix only (89 nt; 294-185). In contrast, an RNA capable of forming either the P0a helix or the pseudoknot (97 nt; 301-185) forms no P1(pk) helix. Thermal unfolding simulations are fully consistent with these experimental findings. These data reveal that the PK forms weakly and only when the competing double-hairpin structure cannot form; in the UTR RNA, the double hairpin is the predominant conformer under all solution conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stammler</LastName>
<ForeName>Suzanne N</ForeName>
<Initials>SN</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Song</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shi-Jie</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Giedroc</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM063732</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI067416</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI067416</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM063732</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI040187</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI040187</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020413">3' Untranslated Regions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020413" MajorTopicYN="Y">3' Untranslated Regions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020029" MajorTopicYN="N">Base Pairing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21799029</ArticleId>
<ArticleId IdType="pii">rna.2816711</ArticleId>
<ArticleId IdType="doi">10.1261/rna.2816711</ArticleId>
<ArticleId IdType="pmc">PMC3162339</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Oct;73(10):8349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Jun 25;289(5):1283-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10373368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Dec;11(12):1884-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Mar 29;128(12):4035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16551112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1403-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(9):2634-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2006;66:193-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Oct 18;25(20):4933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17024178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(3):1274-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Sep;32(9):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17764952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1214-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Mar 28;377(3):790-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Biol. 2008;5(1):016002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2008;37:197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 Feb;15(2):294-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Mar;16(3):343-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 Apr;15(4):696-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):784-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19285444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2009 May 4;10(7):1141-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19382115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Feb;84(3):1423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2010 Mar;16(3):538-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Jun 11;399(3):450-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2010 May-Jun;7(3):328-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20458165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2000 Mar;6(3):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10744025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2011 Mar-Apr;8(2):237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):669-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(14):7846-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1985 Mar 11;13(5):1717-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4000943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1994 Jan;8(2):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8299941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Apr 15;237(5):560-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7512652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8159754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;259:242-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8538457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Oct;71(10):7567-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9311837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Apr 17;280(5362):434-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jun 12;279(3):545-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9641977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Oct 8;395(6702):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9783582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Jun 28;44(25):9058-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15966729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cao, Song" sort="Cao, Song" uniqKey="Cao S" first="Song" last="Cao">Song Cao</name>
<name sortKey="Chen, Shi Jie" sort="Chen, Shi Jie" uniqKey="Chen S" first="Shi-Jie" last="Chen">Shi-Jie Chen</name>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P" last="Giedroc">David P. Giedroc</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Stammler, Suzanne N" sort="Stammler, Suzanne N" uniqKey="Stammler S" first="Suzanne N" last="Stammler">Suzanne N. Stammler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001540 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001540 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21799029
   |texte=   A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21799029" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021