Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.

Identifieur interne : 001484 ( PubMed/Checkpoint ); précédent : 001483; suivant : 001485

Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.

Auteurs : Jennifer R. Cohen [États-Unis] ; Lisa D. Lin ; Carolyn E. Machamer

Source :

RBID : pubmed:21450821

Descripteurs français

English descriptors

Abstract

The 2003 global outbreak of progressive respiratory failure was caused by a newly emerged virus, severe acute respiratory syndrome coronavirus (SARS-CoV). In contrast to many well-studied enveloped viruses that assemble and bud at the plasma membrane, coronaviruses assemble by budding into the lumen of the endoplasmic reticulum-Golgi intermediate compartment and are released from the cell by exocytosis. For this to occur, the viral envelope proteins must be efficiently targeted to the Golgi region of the secretory pathway. Although the envelope protein (E) makes up only a small percentage of the viral envelope, it plays an important, as-yet-undefined role in virus production. To dissect the targeting of the SARS-CoV E protein to the Golgi region, we exogenously expressed the protein and various mutants from cDNA and determined their localization using immunofluorescence microscopy and biochemical assays. We show that the cytoplasmic tail of the SARS-CoV E protein is sufficient to redirect a plasma membrane protein to the Golgi region. Through site-directed mutagenesis, we demonstrate that a predicted beta-hairpin structural motif in the tail is sufficient for Golgi complex localization of a reporter protein. This motif is conserved in E proteins of beta and gamma coronaviruses (formerly referred to as group 2 and 3 coronaviruses), where it also functions as a Golgi complex-targeting signal. Dissecting the mechanism of targeting of the SARS-CoV E protein will lead to a better understanding of its role in the assembly and release of virions.

DOI: 10.1128/JVI.00060-11
PubMed: 21450821


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21450821

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.</title>
<author>
<name sortKey="Cohen, Jennifer R" sort="Cohen, Jennifer R" uniqKey="Cohen J" first="Jennifer R" last="Cohen">Jennifer R. Cohen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Johns Hopkins University, 725 N. Wolfe Street, 105 WBSB, Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Johns Hopkins University, 725 N. Wolfe Street, 105 WBSB, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Lisa D" sort="Lin, Lisa D" uniqKey="Lin L" first="Lisa D" last="Lin">Lisa D. Lin</name>
</author>
<author>
<name sortKey="Machamer, Carolyn E" sort="Machamer, Carolyn E" uniqKey="Machamer C" first="Carolyn E" last="Machamer">Carolyn E. Machamer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21450821</idno>
<idno type="pmid">21450821</idno>
<idno type="doi">10.1128/JVI.00060-11</idno>
<idno type="wicri:Area/PubMed/Corpus">001528</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001528</idno>
<idno type="wicri:Area/PubMed/Curation">001528</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001528</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001484</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001484</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.</title>
<author>
<name sortKey="Cohen, Jennifer R" sort="Cohen, Jennifer R" uniqKey="Cohen J" first="Jennifer R" last="Cohen">Jennifer R. Cohen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Johns Hopkins University, 725 N. Wolfe Street, 105 WBSB, Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Johns Hopkins University, 725 N. Wolfe Street, 105 WBSB, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Lisa D" sort="Lin, Lisa D" uniqKey="Lin L" first="Lisa D" last="Lin">Lisa D. Lin</name>
</author>
<author>
<name sortKey="Machamer, Carolyn E" sort="Machamer, Carolyn E" uniqKey="Machamer C" first="Carolyn E" last="Machamer">Carolyn E. Machamer</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Golgi Apparatus (metabolism)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Microscopy, Fluorescence</term>
<term>Mutation</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>Signal Transduction</term>
<term>Transfection</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Appareil de Golgi (métabolisme)</term>
<term>Cellules HeLa</term>
<term>Humains</term>
<term>Microscopie de fluorescence</term>
<term>Motifs d'acides aminés</term>
<term>Mutation</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (génétique)</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Transduction du signal</term>
<term>Transfection</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de l'enveloppe virale</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Golgi Apparatus</term>
<term>SARS Virus</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Protéines de l'enveloppe virale</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Microscopy, Fluorescence</term>
<term>Mutation</term>
<term>Signal Transduction</term>
<term>Transfection</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Humains</term>
<term>Microscopie de fluorescence</term>
<term>Motifs d'acides aminés</term>
<term>Mutation</term>
<term>Protéines de l'enveloppe virale</term>
<term>Transduction du signal</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 2003 global outbreak of progressive respiratory failure was caused by a newly emerged virus, severe acute respiratory syndrome coronavirus (SARS-CoV). In contrast to many well-studied enveloped viruses that assemble and bud at the plasma membrane, coronaviruses assemble by budding into the lumen of the endoplasmic reticulum-Golgi intermediate compartment and are released from the cell by exocytosis. For this to occur, the viral envelope proteins must be efficiently targeted to the Golgi region of the secretory pathway. Although the envelope protein (E) makes up only a small percentage of the viral envelope, it plays an important, as-yet-undefined role in virus production. To dissect the targeting of the SARS-CoV E protein to the Golgi region, we exogenously expressed the protein and various mutants from cDNA and determined their localization using immunofluorescence microscopy and biochemical assays. We show that the cytoplasmic tail of the SARS-CoV E protein is sufficient to redirect a plasma membrane protein to the Golgi region. Through site-directed mutagenesis, we demonstrate that a predicted beta-hairpin structural motif in the tail is sufficient for Golgi complex localization of a reporter protein. This motif is conserved in E proteins of beta and gamma coronaviruses (formerly referred to as group 2 and 3 coronaviruses), where it also functions as a Golgi complex-targeting signal. Dissecting the mechanism of targeting of the SARS-CoV E protein will lead to a better understanding of its role in the assembly and release of virions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21450821</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.</ArticleTitle>
<Pagination>
<MedlinePgn>5794-803</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00060-11</ELocationID>
<Abstract>
<AbstractText>The 2003 global outbreak of progressive respiratory failure was caused by a newly emerged virus, severe acute respiratory syndrome coronavirus (SARS-CoV). In contrast to many well-studied enveloped viruses that assemble and bud at the plasma membrane, coronaviruses assemble by budding into the lumen of the endoplasmic reticulum-Golgi intermediate compartment and are released from the cell by exocytosis. For this to occur, the viral envelope proteins must be efficiently targeted to the Golgi region of the secretory pathway. Although the envelope protein (E) makes up only a small percentage of the viral envelope, it plays an important, as-yet-undefined role in virus production. To dissect the targeting of the SARS-CoV E protein to the Golgi region, we exogenously expressed the protein and various mutants from cDNA and determined their localization using immunofluorescence microscopy and biochemical assays. We show that the cytoplasmic tail of the SARS-CoV E protein is sufficient to redirect a plasma membrane protein to the Golgi region. Through site-directed mutagenesis, we demonstrate that a predicted beta-hairpin structural motif in the tail is sufficient for Golgi complex localization of a reporter protein. This motif is conserved in E proteins of beta and gamma coronaviruses (formerly referred to as group 2 and 3 coronaviruses), where it also functions as a Golgi complex-targeting signal. Dissecting the mechanism of targeting of the SARS-CoV E protein will lead to a better understanding of its role in the assembly and release of virions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Jennifer R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, Johns Hopkins University, 725 N. Wolfe Street, 105 WBSB, Baltimore, MD 21205, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Lisa D</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Machamer</LastName>
<ForeName>Carolyn E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM042522</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007445</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21A1072312</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21450821</ArticleId>
<ArticleId IdType="pii">JVI.00060-11</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00060-11</ArticleId>
<ArticleId IdType="pmc">PMC3126292</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2004 Aug 13;341(3):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15288785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Sep 30;353(2):294-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1982 Aug;121(1):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6180551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1986 Jun;102(6):2147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3011809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1987 Sep;105(3):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2821010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 15;108(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Oct;68(10):6523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Apr 1;218(1):52-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8615041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 1997 Feb;7(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9061359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Oct;72(10):7885-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Nov;72(11):8636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Dec 3;325(1):374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Dec 5;330(1):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 May;86(Pt 5):1423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jul 4;579(17):3607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):13848-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 7;281(14):8997-9000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:199-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(5):2418-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(5):2249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Aug;64(16):2043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Nov 25;368(2):296-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(6):2989-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Jul;5(7):e1000511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19593379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Jul 5;402(2):281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Nov 15;21(22):3838-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Mar;74(5):2333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 May 18;276(20):17515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):1273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 27;277(39):35833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12130652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(22):11518-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(8):4597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 18;301(5631):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Jul 20;312(1):25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jun 11;318(4):833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 May 29;580(13):3192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Jun 1;119(Pt 11):2173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jun 5;349(2):264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2006 Aug;16(4):514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16837192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507643</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Lin, Lisa D" sort="Lin, Lisa D" uniqKey="Lin L" first="Lisa D" last="Lin">Lisa D. Lin</name>
<name sortKey="Machamer, Carolyn E" sort="Machamer, Carolyn E" uniqKey="Machamer C" first="Carolyn E" last="Machamer">Carolyn E. Machamer</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Cohen, Jennifer R" sort="Cohen, Jennifer R" uniqKey="Cohen J" first="Jennifer R" last="Cohen">Jennifer R. Cohen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001484 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001484 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21450821
   |texte=   Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21450821" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021