Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.

Identifieur interne : 001309 ( PubMed/Checkpoint ); précédent : 001308; suivant : 001310

RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.

Auteurs : Mickaël Bouvet [France] ; Isabelle Imbert ; Lorenzo Subissi ; Laure Gluais ; Bruno Canard ; Etienne Decroly

Source :

RBID : pubmed:22635272

Descripteurs français

English descriptors

Abstract

The replication/transcription complex of severe acute respiratory syndrome coronavirus is composed of at least 16 nonstructural proteins (nsp1-16) encoded by the ORF-1a/1b. This complex includes replication enzymes commonly found in positive-strand RNA viruses, but also a set of RNA-processing activities unique to some nidoviruses. The nsp14 protein carries both exoribonuclease (ExoN) and (guanine-N7)-methyltransferase (N7-MTase) activities. The nsp14 ExoN activity ensures a yet-uncharacterized function in the virus life cycle and must be regulated to avoid nonspecific RNA degradation. In this work, we show that the association of nsp10 with nsp14 stimulates >35-fold the ExoN activity of the latter while playing no effect on N7-MTase activity. Nsp10 mutants unable to interact with nsp14 are not proficient for ExoN activation. The nsp10/nsp14 complex hydrolyzes double-stranded RNA in a 3' to 5' direction as well as a single mismatched nucleotide at the 3'-end mimicking an erroneous replication product. In contrast, di-, tri-, and longer unpaired ribonucleotide stretches, as well as 3'-modified RNAs, resist nsp10/nsp14-mediated excision. In addition to the activation of nsp16-mediated 2'-O-MTase activity, nsp10 also activates nsp14 in an RNA processing function potentially connected to a replicative mismatch repair mechanism.

DOI: 10.1073/pnas.1201130109
PubMed: 22635272


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22635272

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.</title>
<author>
<name sortKey="Bouvet, Mickael" sort="Bouvet, Mickael" uniqKey="Bouvet M" first="Mickaël" last="Bouvet">Mickaël Bouvet</name>
<affiliation wicri:level="3">
<nlm:affiliation>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Ecole Supérieure d'Ingénieurs de Luminy Case 925, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Ecole Supérieure d'Ingénieurs de Luminy Case 925, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Imbert, Isabelle" sort="Imbert, Isabelle" uniqKey="Imbert I" first="Isabelle" last="Imbert">Isabelle Imbert</name>
</author>
<author>
<name sortKey="Subissi, Lorenzo" sort="Subissi, Lorenzo" uniqKey="Subissi L" first="Lorenzo" last="Subissi">Lorenzo Subissi</name>
</author>
<author>
<name sortKey="Gluais, Laure" sort="Gluais, Laure" uniqKey="Gluais L" first="Laure" last="Gluais">Laure Gluais</name>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
</author>
<author>
<name sortKey="Decroly, Etienne" sort="Decroly, Etienne" uniqKey="Decroly E" first="Etienne" last="Decroly">Etienne Decroly</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22635272</idno>
<idno type="pmid">22635272</idno>
<idno type="doi">10.1073/pnas.1201130109</idno>
<idno type="wicri:Area/PubMed/Corpus">001357</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001357</idno>
<idno type="wicri:Area/PubMed/Curation">001357</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001357</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001309</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001309</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.</title>
<author>
<name sortKey="Bouvet, Mickael" sort="Bouvet, Mickael" uniqKey="Bouvet M" first="Mickaël" last="Bouvet">Mickaël Bouvet</name>
<affiliation wicri:level="3">
<nlm:affiliation>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Ecole Supérieure d'Ingénieurs de Luminy Case 925, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Ecole Supérieure d'Ingénieurs de Luminy Case 925, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Imbert, Isabelle" sort="Imbert, Isabelle" uniqKey="Imbert I" first="Isabelle" last="Imbert">Isabelle Imbert</name>
</author>
<author>
<name sortKey="Subissi, Lorenzo" sort="Subissi, Lorenzo" uniqKey="Subissi L" first="Lorenzo" last="Subissi">Lorenzo Subissi</name>
</author>
<author>
<name sortKey="Gluais, Laure" sort="Gluais, Laure" uniqKey="Gluais L" first="Laure" last="Gluais">Laure Gluais</name>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
</author>
<author>
<name sortKey="Decroly, Etienne" sort="Decroly, Etienne" uniqKey="Decroly E" first="Etienne" last="Decroly">Etienne Decroly</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Pair Mismatch</term>
<term>Exoribonucleases (genetics)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Open Reading Frames</term>
<term>RNA Processing, Post-Transcriptional</term>
<term>RNA, Viral (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral (génétique)</term>
<term>Cadres ouverts de lecture</term>
<term>Exoribonucleases (génétique)</term>
<term>Exoribonucleases (métabolisme)</term>
<term>Maturation post-transcriptionnelle des ARN</term>
<term>Mésappariement de bases</term>
<term>Protéines virales non structurales (génétique)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA, Viral</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Exoribonucleases</term>
<term>Protéines virales non structurales</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Exoribonucleases</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pair Mismatch</term>
<term>Open Reading Frames</term>
<term>RNA Processing, Post-Transcriptional</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Maturation post-transcriptionnelle des ARN</term>
<term>Mésappariement de bases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The replication/transcription complex of severe acute respiratory syndrome coronavirus is composed of at least 16 nonstructural proteins (nsp1-16) encoded by the ORF-1a/1b. This complex includes replication enzymes commonly found in positive-strand RNA viruses, but also a set of RNA-processing activities unique to some nidoviruses. The nsp14 protein carries both exoribonuclease (ExoN) and (guanine-N7)-methyltransferase (N7-MTase) activities. The nsp14 ExoN activity ensures a yet-uncharacterized function in the virus life cycle and must be regulated to avoid nonspecific RNA degradation. In this work, we show that the association of nsp10 with nsp14 stimulates >35-fold the ExoN activity of the latter while playing no effect on N7-MTase activity. Nsp10 mutants unable to interact with nsp14 are not proficient for ExoN activation. The nsp10/nsp14 complex hydrolyzes double-stranded RNA in a 3' to 5' direction as well as a single mismatched nucleotide at the 3'-end mimicking an erroneous replication product. In contrast, di-, tri-, and longer unpaired ribonucleotide stretches, as well as 3'-modified RNAs, resist nsp10/nsp14-mediated excision. In addition to the activation of nsp16-mediated 2'-O-MTase activity, nsp10 also activates nsp14 in an RNA processing function potentially connected to a replicative mismatch repair mechanism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22635272</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>109</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.</ArticleTitle>
<Pagination>
<MedlinePgn>9372-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1201130109</ELocationID>
<Abstract>
<AbstractText>The replication/transcription complex of severe acute respiratory syndrome coronavirus is composed of at least 16 nonstructural proteins (nsp1-16) encoded by the ORF-1a/1b. This complex includes replication enzymes commonly found in positive-strand RNA viruses, but also a set of RNA-processing activities unique to some nidoviruses. The nsp14 protein carries both exoribonuclease (ExoN) and (guanine-N7)-methyltransferase (N7-MTase) activities. The nsp14 ExoN activity ensures a yet-uncharacterized function in the virus life cycle and must be regulated to avoid nonspecific RNA degradation. In this work, we show that the association of nsp10 with nsp14 stimulates >35-fold the ExoN activity of the latter while playing no effect on N7-MTase activity. Nsp10 mutants unable to interact with nsp14 are not proficient for ExoN activation. The nsp10/nsp14 complex hydrolyzes double-stranded RNA in a 3' to 5' direction as well as a single mismatched nucleotide at the 3'-end mimicking an erroneous replication product. In contrast, di-, tri-, and longer unpaired ribonucleotide stretches, as well as 3'-modified RNAs, resist nsp10/nsp14-mediated excision. In addition to the activation of nsp16-mediated 2'-O-MTase activity, nsp10 also activates nsp14 in an RNA processing function potentially connected to a replicative mismatch repair mechanism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bouvet</LastName>
<ForeName>Mickaël</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Ecole Supérieure d'Ingénieurs de Luminy Case 925, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Imbert</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Subissi</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gluais</LastName>
<ForeName>Laure</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canard</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Decroly</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C558878">Nsp10 protein, SARS virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.56</RegistryNumber>
<NameOfSubstance UI="C525596">nsp14 protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020137" MajorTopicYN="Y">Base Pair Mismatch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012323" MajorTopicYN="N">RNA Processing, Post-Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22635272</ArticleId>
<ArticleId IdType="pii">1201130109</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1201130109</ArticleId>
<ArticleId IdType="pmc">PMC3386072</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10400-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 25;361(1):18-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12696-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 8;283(6):3655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 May;133(2):136-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18255185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2009 Dec;19(6):732-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 May;6(5):e1000896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 22;285(43):33230-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 18;468(7322):452-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 9;468(7325):779-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Feb;12(2):137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Feb;12(2):114-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2396-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21262835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Mar 1;67(Pt 3):404-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21393853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2011 Mar-Apr;8(2):270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 May;7(5):e1002059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 May;3(5):364-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Aug 8;114(3):335-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12914698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Aug 8;114(3):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12914699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Aug 5;261(22):10417-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3015929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 May 15;93(4):627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9604937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Apr 1;62(Pt 4):409-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16582498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7902-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 28;313(5786):447-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 28;313(5786):518-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2007 Sep 30;40(5):649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927896</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
<name sortKey="Decroly, Etienne" sort="Decroly, Etienne" uniqKey="Decroly E" first="Etienne" last="Decroly">Etienne Decroly</name>
<name sortKey="Gluais, Laure" sort="Gluais, Laure" uniqKey="Gluais L" first="Laure" last="Gluais">Laure Gluais</name>
<name sortKey="Imbert, Isabelle" sort="Imbert, Isabelle" uniqKey="Imbert I" first="Isabelle" last="Imbert">Isabelle Imbert</name>
<name sortKey="Subissi, Lorenzo" sort="Subissi, Lorenzo" uniqKey="Subissi L" first="Lorenzo" last="Subissi">Lorenzo Subissi</name>
</noCountry>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Bouvet, Mickael" sort="Bouvet, Mickael" uniqKey="Bouvet M" first="Mickaël" last="Bouvet">Mickaël Bouvet</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001309 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001309 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22635272
   |texte=   RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22635272" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021