Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.

Identifieur interne : 001186 ( PubMed/Checkpoint ); précédent : 001185; suivant : 001187

Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.

Auteurs : Eveline Kindler [Suisse] ; Hulda R. J Nsd Ttir ; Doreen Muth ; Ole J. Hamming ; Rune Hartmann ; Regulo Rodriguez ; Robert Geffers ; Ron A M. Fouchier ; Christian Drosten ; Marcel A. Müller ; Ronald Dijkman ; Volker Thiel

Source :

RBID : pubmed:23422412

Descripteurs français

English descriptors

Abstract

The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first barrier against invading respiratory pathogens is the epithelium, representing the entry point and primary target tissue of respiratory viruses. We show that human bronchial epithelia are highly susceptible to HCoV-EMC infection. Furthermore, HCoV-EMC, like other coronaviruses, evades innate immune recognition, reflected by the lack of interferon and minimal inflammatory cytokine expression following infection. Importantly, type I and type III interferon treatment can efficiently reduce HCoV-EMC replication in the human airway epithelium, providing a possible avenue for treatment of emerging virus infections.

DOI: 10.1128/mBio.00611-12
PubMed: 23422412


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23422412

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.</title>
<author>
<name sortKey="Kindler, Eveline" sort="Kindler, Eveline" uniqKey="Kindler E" first="Eveline" last="Kindler">Eveline Kindler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Immunobiology, Kantonal Hospital, St. Gallen, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Immunobiology, Kantonal Hospital, St. Gallen</wicri:regionArea>
<wicri:noRegion>St. Gallen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="J Nsd Ttir, Hulda R" sort="J Nsd Ttir, Hulda R" uniqKey="J Nsd Ttir H" first="Hulda R" last="J Nsd Ttir">Hulda R. J Nsd Ttir</name>
</author>
<author>
<name sortKey="Muth, Doreen" sort="Muth, Doreen" uniqKey="Muth D" first="Doreen" last="Muth">Doreen Muth</name>
</author>
<author>
<name sortKey="Hamming, Ole J" sort="Hamming, Ole J" uniqKey="Hamming O" first="Ole J" last="Hamming">Ole J. Hamming</name>
</author>
<author>
<name sortKey="Hartmann, Rune" sort="Hartmann, Rune" uniqKey="Hartmann R" first="Rune" last="Hartmann">Rune Hartmann</name>
</author>
<author>
<name sortKey="Rodriguez, Regulo" sort="Rodriguez, Regulo" uniqKey="Rodriguez R" first="Regulo" last="Rodriguez">Regulo Rodriguez</name>
</author>
<author>
<name sortKey="Geffers, Robert" sort="Geffers, Robert" uniqKey="Geffers R" first="Robert" last="Geffers">Robert Geffers</name>
</author>
<author>
<name sortKey="Fouchier, Ron A M" sort="Fouchier, Ron A M" uniqKey="Fouchier R" first="Ron A M" last="Fouchier">Ron A M. Fouchier</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A" last="Müller">Marcel A. Müller</name>
</author>
<author>
<name sortKey="Dijkman, Ronald" sort="Dijkman, Ronald" uniqKey="Dijkman R" first="Ronald" last="Dijkman">Ronald Dijkman</name>
</author>
<author>
<name sortKey="Thiel, Volker" sort="Thiel, Volker" uniqKey="Thiel V" first="Volker" last="Thiel">Volker Thiel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23422412</idno>
<idno type="pmid">23422412</idno>
<idno type="doi">10.1128/mBio.00611-12</idno>
<idno type="wicri:Area/PubMed/Corpus">001249</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001249</idno>
<idno type="wicri:Area/PubMed/Curation">001249</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001249</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001186</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001186</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.</title>
<author>
<name sortKey="Kindler, Eveline" sort="Kindler, Eveline" uniqKey="Kindler E" first="Eveline" last="Kindler">Eveline Kindler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Immunobiology, Kantonal Hospital, St. Gallen, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Immunobiology, Kantonal Hospital, St. Gallen</wicri:regionArea>
<wicri:noRegion>St. Gallen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="J Nsd Ttir, Hulda R" sort="J Nsd Ttir, Hulda R" uniqKey="J Nsd Ttir H" first="Hulda R" last="J Nsd Ttir">Hulda R. J Nsd Ttir</name>
</author>
<author>
<name sortKey="Muth, Doreen" sort="Muth, Doreen" uniqKey="Muth D" first="Doreen" last="Muth">Doreen Muth</name>
</author>
<author>
<name sortKey="Hamming, Ole J" sort="Hamming, Ole J" uniqKey="Hamming O" first="Ole J" last="Hamming">Ole J. Hamming</name>
</author>
<author>
<name sortKey="Hartmann, Rune" sort="Hartmann, Rune" uniqKey="Hartmann R" first="Rune" last="Hartmann">Rune Hartmann</name>
</author>
<author>
<name sortKey="Rodriguez, Regulo" sort="Rodriguez, Regulo" uniqKey="Rodriguez R" first="Regulo" last="Rodriguez">Regulo Rodriguez</name>
</author>
<author>
<name sortKey="Geffers, Robert" sort="Geffers, Robert" uniqKey="Geffers R" first="Robert" last="Geffers">Robert Geffers</name>
</author>
<author>
<name sortKey="Fouchier, Ron A M" sort="Fouchier, Ron A M" uniqKey="Fouchier R" first="Ron A M" last="Fouchier">Ron A M. Fouchier</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A" last="Müller">Marcel A. Müller</name>
</author>
<author>
<name sortKey="Dijkman, Ronald" sort="Dijkman, Ronald" uniqKey="Dijkman R" first="Ronald" last="Dijkman">Ronald Dijkman</name>
</author>
<author>
<name sortKey="Thiel, Volker" sort="Thiel, Volker" uniqKey="Thiel V" first="Volker" last="Thiel">Volker Thiel</name>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Coronaviridae (growth & development)</term>
<term>Coronaviridae (isolation & purification)</term>
<term>Coronaviridae (pathogenicity)</term>
<term>Coronaviridae (physiology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cytokines (biosynthesis)</term>
<term>Epithelial Cells (virology)</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Middle East</term>
<term>RNA, Messenger (biosynthesis)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Viral (biosynthesis)</term>
<term>RNA, Viral (genetics)</term>
<term>Respiratory Tract Infections (virology)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Analysis, RNA</term>
<term>Virus Replication</term>
<term>Zoonoses (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (biosynthèse)</term>
<term>ARN messager (génétique)</term>
<term>ARN viral (biosynthèse)</term>
<term>ARN viral (génétique)</term>
<term>Analyse de séquence d'ARN</term>
<term>Animaux</term>
<term>Cellules épithéliales (virologie)</term>
<term>Coronaviridae (croissance et développement)</term>
<term>Coronaviridae (isolement et purification)</term>
<term>Coronaviridae (pathogénicité)</term>
<term>Coronaviridae (physiologie)</term>
<term>Cytokines (biosynthèse)</term>
<term>Humains</term>
<term>Infections de l'appareil respiratoire (virologie)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Moyen Orient</term>
<term>RT-PCR</term>
<term>Réplication virale</term>
<term>Zoonoses (virologie)</term>
<term>Échappement immunitaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cytokines</term>
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Middle East</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>ARN messager</term>
<term>ARN viral</term>
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>ARN viral</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Infections de l'appareil respiratoire</term>
<term>Infections à coronavirus</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Epithelial Cells</term>
<term>Respiratory Tract Infections</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Analysis, RNA</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ARN</term>
<term>Animaux</term>
<term>Humains</term>
<term>Moyen Orient</term>
<term>RT-PCR</term>
<term>Réplication virale</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first barrier against invading respiratory pathogens is the epithelium, representing the entry point and primary target tissue of respiratory viruses. We show that human bronchial epithelia are highly susceptible to HCoV-EMC infection. Furthermore, HCoV-EMC, like other coronaviruses, evades innate immune recognition, reflected by the lack of interferon and minimal inflammatory cytokine expression following infection. Importantly, type I and type III interferon treatment can efficiently reduce HCoV-EMC replication in the human airway epithelium, providing a possible avenue for treatment of emerging virus infections.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23422412</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.</ArticleTitle>
<Pagination>
<MedlinePgn>e00611-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00611-12</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e00611-12</ELocationID>
<Abstract>
<AbstractText>The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first barrier against invading respiratory pathogens is the epithelium, representing the entry point and primary target tissue of respiratory viruses. We show that human bronchial epithelia are highly susceptible to HCoV-EMC infection. Furthermore, HCoV-EMC, like other coronaviruses, evades innate immune recognition, reflected by the lack of interferon and minimal inflammatory cytokine expression following infection. Importantly, type I and type III interferon treatment can efficiently reduce HCoV-EMC replication in the human airway epithelium, providing a possible avenue for treatment of emerging virus infections.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kindler</LastName>
<ForeName>Eveline</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute of Immunobiology, Kantonal Hospital, St. Gallen, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jónsdóttir</LastName>
<ForeName>Hulda R</ForeName>
<Initials>HR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muth</LastName>
<ForeName>Doreen</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamming</LastName>
<ForeName>Ole J</ForeName>
<Initials>OJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hartmann</LastName>
<ForeName>Rune</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez</LastName>
<ForeName>Regulo</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Geffers</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fouchier</LastName>
<ForeName>Ron A M</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Drosten</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Marcel A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dijkman</LastName>
<ForeName>Ronald</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thiel</LastName>
<ForeName>Volker</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>MBio. 2013;4(2):e00191-13</RefSource>
<PMID Version="1">23572553</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003332" MajorTopicYN="N">Coronaviridae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008877" MajorTopicYN="N" Type="Geographic">Middle East</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012141" MajorTopicYN="N">Respiratory Tract Infections</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015047" MajorTopicYN="N">Zoonoses</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23422412</ArticleId>
<ArticleId IdType="pii">mBio.00611-12</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00611-12</ArticleId>
<ArticleId IdType="pmc">PMC3573664</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Immun. 2009 Mar;10(2):125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2010 Sep;52(3):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20564352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7739-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23427150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 10;108(19):7944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Feb 1;109(3):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Med. 2005;107:183-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15492373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Mar;4(3):e1000017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18369468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012;17(39). pii: 20285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Dec 24;290(24):3222-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14693875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2009 Dec;1(3):647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00515-12. doi: 10.1128/mBio.00515-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23232719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dijkman, Ronald" sort="Dijkman, Ronald" uniqKey="Dijkman R" first="Ronald" last="Dijkman">Ronald Dijkman</name>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<name sortKey="Fouchier, Ron A M" sort="Fouchier, Ron A M" uniqKey="Fouchier R" first="Ron A M" last="Fouchier">Ron A M. Fouchier</name>
<name sortKey="Geffers, Robert" sort="Geffers, Robert" uniqKey="Geffers R" first="Robert" last="Geffers">Robert Geffers</name>
<name sortKey="Hamming, Ole J" sort="Hamming, Ole J" uniqKey="Hamming O" first="Ole J" last="Hamming">Ole J. Hamming</name>
<name sortKey="Hartmann, Rune" sort="Hartmann, Rune" uniqKey="Hartmann R" first="Rune" last="Hartmann">Rune Hartmann</name>
<name sortKey="J Nsd Ttir, Hulda R" sort="J Nsd Ttir, Hulda R" uniqKey="J Nsd Ttir H" first="Hulda R" last="J Nsd Ttir">Hulda R. J Nsd Ttir</name>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A" last="Müller">Marcel A. Müller</name>
<name sortKey="Muth, Doreen" sort="Muth, Doreen" uniqKey="Muth D" first="Doreen" last="Muth">Doreen Muth</name>
<name sortKey="Rodriguez, Regulo" sort="Rodriguez, Regulo" uniqKey="Rodriguez R" first="Regulo" last="Rodriguez">Regulo Rodriguez</name>
<name sortKey="Thiel, Volker" sort="Thiel, Volker" uniqKey="Thiel V" first="Volker" last="Thiel">Volker Thiel</name>
</noCountry>
<country name="Suisse">
<noRegion>
<name sortKey="Kindler, Eveline" sort="Kindler, Eveline" uniqKey="Kindler E" first="Eveline" last="Kindler">Eveline Kindler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23422412
   |texte=   Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23422412" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021