Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Receptor-binding domain as a target for developing SARS vaccines.

Identifieur interne : 001114 ( PubMed/Checkpoint ); précédent : 001113; suivant : 001115

Receptor-binding domain as a target for developing SARS vaccines.

Auteurs : Xiaojie Zhu [République populaire de Chine] ; Qi Liu ; Lanying Du ; Lu Lu ; Shibo Jiang

Source :

RBID : pubmed:23977435

Abstract

A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV.

DOI: 10.3978/j.issn.2072-1439.2013.06.06
PubMed: 23977435


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23977435

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Receptor-binding domain as a target for developing SARS vaccines.</title>
<author>
<name sortKey="Zhu, Xiaojie" sort="Zhu, Xiaojie" uniqKey="Zhu X" first="Xiaojie" last="Zhu">Xiaojie Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China;</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
</author>
<author>
<name sortKey="Du, Lanying" sort="Du, Lanying" uniqKey="Du L" first="Lanying" last="Du">Lanying Du</name>
</author>
<author>
<name sortKey="Lu, Lu" sort="Lu, Lu" uniqKey="Lu L" first="Lu" last="Lu">Lu Lu</name>
</author>
<author>
<name sortKey="Jiang, Shibo" sort="Jiang, Shibo" uniqKey="Jiang S" first="Shibo" last="Jiang">Shibo Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23977435</idno>
<idno type="pmid">23977435</idno>
<idno type="doi">10.3978/j.issn.2072-1439.2013.06.06</idno>
<idno type="wicri:Area/PubMed/Corpus">001141</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001141</idno>
<idno type="wicri:Area/PubMed/Curation">001141</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001141</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001114</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001114</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Receptor-binding domain as a target for developing SARS vaccines.</title>
<author>
<name sortKey="Zhu, Xiaojie" sort="Zhu, Xiaojie" uniqKey="Zhu X" first="Xiaojie" last="Zhu">Xiaojie Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China;</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
</author>
<author>
<name sortKey="Du, Lanying" sort="Du, Lanying" uniqKey="Du L" first="Lanying" last="Du">Lanying Du</name>
</author>
<author>
<name sortKey="Lu, Lu" sort="Lu, Lu" uniqKey="Lu L" first="Lu" last="Lu">Lu Lu</name>
</author>
<author>
<name sortKey="Jiang, Shibo" sort="Jiang, Shibo" uniqKey="Jiang S" first="Shibo" last="Jiang">Shibo Jiang</name>
</author>
</analytic>
<series>
<title level="j">Journal of thoracic disease</title>
<idno type="ISSN">2072-1439</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23977435</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">2072-1439</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5 Suppl 2</Volume>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of thoracic disease</Title>
<ISOAbbreviation>J Thorac Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>Receptor-binding domain as a target for developing SARS vaccines.</ArticleTitle>
<Pagination>
<MedlinePgn>S142-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3978/j.issn.2072-1439.2013.06.06</ELocationID>
<Abstract>
<AbstractText>A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xiaojie</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Lanying</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Lu</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Shibo</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI098775</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>J Thorac Dis</MedlineTA>
<NlmUniqueID>101533916</NlmUniqueID>
<ISSNLinking>2072-1439</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Virus</Keyword>
<Keyword MajorTopicYN="N">receptor-binding domain (RBD)</Keyword>
<Keyword MajorTopicYN="N">severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV)</Keyword>
<Keyword MajorTopicYN="N">spike protein</Keyword>
<Keyword MajorTopicYN="N">vaccine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23977435</ArticleId>
<ArticleId IdType="doi">10.3978/j.issn.2072-1439.2013.06.06</ArticleId>
<ArticleId IdType="pii">jtd-05-S2-S142</ArticleId>
<ArticleId IdType="pmc">PMC3747534</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Oct 4;490(7418):20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23038444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Jan 15;180(2):948-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367 (19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Dec;3(12):e525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Dec 10;325(2):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15530413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2012 Dec;11(12):1405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23252385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 May 16;368(20):1888-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 May 10;361(2):304-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):176-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Feb;18(2):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2013 Aug;67(2):130-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23583636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Jun 13;368(24):2277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23697469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Nov 1;181(9):6337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18941225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Mar;7(3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19198616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2010 Apr;23(2):211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Oct 25;362(9393):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Apr 15;174(8):4908-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 12;324(2):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2008 Mar 20;26(13):1644-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hong Kong Med J. 2012 Feb;18 Suppl 2:31-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22311359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 19;280(33):29588-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2013 Oct;67(4):348-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23685240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2013 Jun;15(6-7):432-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23628410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Oct;10(10):1774-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15504263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Apr 12;25(15):2832-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Mar 30;334(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Sep 15;353(1):6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(18):11638-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22536382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(23):12201-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2013 May;66(5):464-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23266463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Jul 10;384(4):486-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19422787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Du, Lanying" sort="Du, Lanying" uniqKey="Du L" first="Lanying" last="Du">Lanying Du</name>
<name sortKey="Jiang, Shibo" sort="Jiang, Shibo" uniqKey="Jiang S" first="Shibo" last="Jiang">Shibo Jiang</name>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
<name sortKey="Lu, Lu" sort="Lu, Lu" uniqKey="Lu L" first="Lu" last="Lu">Lu Lu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhu, Xiaojie" sort="Zhu, Xiaojie" uniqKey="Zhu X" first="Xiaojie" last="Zhu">Xiaojie Zhu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23977435
   |texte=   Receptor-binding domain as a target for developing SARS vaccines.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23977435" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021