Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of viral population diversity in adaptation of bovine coronavirus to new host environments.

Identifieur interne : 001079 ( PubMed/Checkpoint ); précédent : 001078; suivant : 001080

The role of viral population diversity in adaptation of bovine coronavirus to new host environments.

Auteurs : Monica K. Borucki [États-Unis] ; Jonathan E. Allen ; Haiyin Chen-Harris ; Adam Zemla ; Gilda Vanier ; Shalini Mabery ; Clinton Torres ; Pamela Hullinger ; Tom Slezak

Source :

RBID : pubmed:23308119

Descripteurs français

English descriptors

Abstract

The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.

DOI: 10.1371/journal.pone.0052752
PubMed: 23308119


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23308119

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of viral population diversity in adaptation of bovine coronavirus to new host environments.</title>
<author>
<name sortKey="Borucki, Monica K" sort="Borucki, Monica K" uniqKey="Borucki M" first="Monica K" last="Borucki">Monica K. Borucki</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lawrence Livermore National Laboratory, Livermore, CA, USA. borucki2@llnl.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lawrence Livermore National Laboratory, Livermore, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Allen, Jonathan E" sort="Allen, Jonathan E" uniqKey="Allen J" first="Jonathan E" last="Allen">Jonathan E. Allen</name>
</author>
<author>
<name sortKey="Chen Harris, Haiyin" sort="Chen Harris, Haiyin" uniqKey="Chen Harris H" first="Haiyin" last="Chen-Harris">Haiyin Chen-Harris</name>
</author>
<author>
<name sortKey="Zemla, Adam" sort="Zemla, Adam" uniqKey="Zemla A" first="Adam" last="Zemla">Adam Zemla</name>
</author>
<author>
<name sortKey="Vanier, Gilda" sort="Vanier, Gilda" uniqKey="Vanier G" first="Gilda" last="Vanier">Gilda Vanier</name>
</author>
<author>
<name sortKey="Mabery, Shalini" sort="Mabery, Shalini" uniqKey="Mabery S" first="Shalini" last="Mabery">Shalini Mabery</name>
</author>
<author>
<name sortKey="Torres, Clinton" sort="Torres, Clinton" uniqKey="Torres C" first="Clinton" last="Torres">Clinton Torres</name>
</author>
<author>
<name sortKey="Hullinger, Pamela" sort="Hullinger, Pamela" uniqKey="Hullinger P" first="Pamela" last="Hullinger">Pamela Hullinger</name>
</author>
<author>
<name sortKey="Slezak, Tom" sort="Slezak, Tom" uniqKey="Slezak T" first="Tom" last="Slezak">Tom Slezak</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23308119</idno>
<idno type="pmid">23308119</idno>
<idno type="doi">10.1371/journal.pone.0052752</idno>
<idno type="wicri:Area/PubMed/Corpus">001263</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001263</idno>
<idno type="wicri:Area/PubMed/Curation">001263</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001263</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001079</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001079</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of viral population diversity in adaptation of bovine coronavirus to new host environments.</title>
<author>
<name sortKey="Borucki, Monica K" sort="Borucki, Monica K" uniqKey="Borucki M" first="Monica K" last="Borucki">Monica K. Borucki</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lawrence Livermore National Laboratory, Livermore, CA, USA. borucki2@llnl.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lawrence Livermore National Laboratory, Livermore, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Allen, Jonathan E" sort="Allen, Jonathan E" uniqKey="Allen J" first="Jonathan E" last="Allen">Jonathan E. Allen</name>
</author>
<author>
<name sortKey="Chen Harris, Haiyin" sort="Chen Harris, Haiyin" uniqKey="Chen Harris H" first="Haiyin" last="Chen-Harris">Haiyin Chen-Harris</name>
</author>
<author>
<name sortKey="Zemla, Adam" sort="Zemla, Adam" uniqKey="Zemla A" first="Adam" last="Zemla">Adam Zemla</name>
</author>
<author>
<name sortKey="Vanier, Gilda" sort="Vanier, Gilda" uniqKey="Vanier G" first="Gilda" last="Vanier">Gilda Vanier</name>
</author>
<author>
<name sortKey="Mabery, Shalini" sort="Mabery, Shalini" uniqKey="Mabery S" first="Shalini" last="Mabery">Shalini Mabery</name>
</author>
<author>
<name sortKey="Torres, Clinton" sort="Torres, Clinton" uniqKey="Torres C" first="Clinton" last="Torres">Clinton Torres</name>
</author>
<author>
<name sortKey="Hullinger, Pamela" sort="Hullinger, Pamela" uniqKey="Hullinger P" first="Pamela" last="Hullinger">Pamela Hullinger</name>
</author>
<author>
<name sortKey="Slezak, Tom" sort="Slezak, Tom" uniqKey="Slezak T" first="Tom" last="Slezak">Tom Slezak</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cattle (virology)</term>
<term>Cell Line</term>
<term>Consensus Sequence</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Coronavirus, Bovine (chemistry)</term>
<term>Coronavirus, Bovine (genetics)</term>
<term>Coronavirus, Bovine (physiology)</term>
<term>Genetic Variation</term>
<term>Genome, Viral</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutation Rate</term>
<term>Phylogeny</term>
<term>Point Mutation</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Animaux</term>
<term>Bovins (virologie)</term>
<term>Coronavirus bovin ()</term>
<term>Coronavirus bovin (génétique)</term>
<term>Coronavirus bovin (physiologie)</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Infections à coronavirus (médecine vétérinaire)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Lignée cellulaire</term>
<term>Modèles moléculaires</term>
<term>Mutation ponctuelle</term>
<term>Phylogénie</term>
<term>Protéines virales ()</term>
<term>Protéines virales (génétique)</term>
<term>Pénétration virale</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence consensus</term>
<term>Séquence d'acides aminés</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Taux de mutation</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Coronavirus, Bovine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus, Bovine</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus bovin</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus bovin</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus, Bovine</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Bovins</term>
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Cattle</term>
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Consensus Sequence</term>
<term>Genetic Variation</term>
<term>Genome, Viral</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutation Rate</term>
<term>Phylogeny</term>
<term>Point Mutation</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Animaux</term>
<term>Coronavirus bovin</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Modèles moléculaires</term>
<term>Mutation ponctuelle</term>
<term>Phylogénie</term>
<term>Protéines virales</term>
<term>Pénétration virale</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence consensus</term>
<term>Séquence d'acides aminés</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Taux de mutation</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23308119</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of viral population diversity in adaptation of bovine coronavirus to new host environments.</ArticleTitle>
<Pagination>
<MedlinePgn>e52752</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0052752</ELocationID>
<Abstract>
<AbstractText>The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Borucki</LastName>
<ForeName>Monica K</ForeName>
<Initials>MK</Initials>
<AffiliationInfo>
<Affiliation>Lawrence Livermore National Laboratory, Livermore, CA, USA. borucki2@llnl.gov</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Allen</LastName>
<ForeName>Jonathan E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen-Harris</LastName>
<ForeName>Haiyin</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zemla</LastName>
<ForeName>Adam</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vanier</LastName>
<ForeName>Gilda</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mabery</LastName>
<ForeName>Shalini</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Torres</LastName>
<ForeName>Clinton</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hullinger</LastName>
<ForeName>Pamela</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Slezak</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016384" MajorTopicYN="N">Consensus Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017938" MajorTopicYN="N">Coronavirus, Bovine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059645" MajorTopicYN="N">Mutation Rate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23308119</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0052752</ArticleId>
<ArticleId IdType="pii">PONE-D-12-29217</ArticleId>
<ArticleId IdType="pmc">PMC3538757</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 1991 Jul;183(1):397-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2053289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Sep;64(9):4108-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2384915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1993 May;10(3):512-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Immunol Immunopathol. 1995 Apr;45(3-4):211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7676607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 1998;17(1):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9778786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W111-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):14451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Feb;7(2):168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(9):4211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):7270-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Dec;80(24):12350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Jun 20;363(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(12):6078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11985-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2009 Sep;128(1 Suppl):e181-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Apr;84(7):3134-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Nov;38(21):7400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Mar;85(5):2266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21521499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10696-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e30802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2011 Dec;1(6):643-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2012 Jun;76(2):159-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22688811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2000 Jul;14(10):1447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10877838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Oct 10;276(1):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11021998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2001 Aug;83(8):811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11530214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Dec;82(Pt 12):2927-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2001 Dec;146(12):2401-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11811688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2003 Nov;148(11):2207-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14579179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(21):11551-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15479796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Rec. 1988 Sep 10;123(11):300-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2848350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1988;103(1-2):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2463821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1990 Feb;71 ( Pt 2):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2155283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1992 Apr;73 ( Pt 4):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1321878</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Allen, Jonathan E" sort="Allen, Jonathan E" uniqKey="Allen J" first="Jonathan E" last="Allen">Jonathan E. Allen</name>
<name sortKey="Chen Harris, Haiyin" sort="Chen Harris, Haiyin" uniqKey="Chen Harris H" first="Haiyin" last="Chen-Harris">Haiyin Chen-Harris</name>
<name sortKey="Hullinger, Pamela" sort="Hullinger, Pamela" uniqKey="Hullinger P" first="Pamela" last="Hullinger">Pamela Hullinger</name>
<name sortKey="Mabery, Shalini" sort="Mabery, Shalini" uniqKey="Mabery S" first="Shalini" last="Mabery">Shalini Mabery</name>
<name sortKey="Slezak, Tom" sort="Slezak, Tom" uniqKey="Slezak T" first="Tom" last="Slezak">Tom Slezak</name>
<name sortKey="Torres, Clinton" sort="Torres, Clinton" uniqKey="Torres C" first="Clinton" last="Torres">Clinton Torres</name>
<name sortKey="Vanier, Gilda" sort="Vanier, Gilda" uniqKey="Vanier G" first="Gilda" last="Vanier">Gilda Vanier</name>
<name sortKey="Zemla, Adam" sort="Zemla, Adam" uniqKey="Zemla A" first="Adam" last="Zemla">Adam Zemla</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Borucki, Monica K" sort="Borucki, Monica K" uniqKey="Borucki M" first="Monica K" last="Borucki">Monica K. Borucki</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001079 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001079 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23308119
   |texte=   The role of viral population diversity in adaptation of bovine coronavirus to new host environments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23308119" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021