Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.

Identifieur interne : 001075 ( PubMed/Checkpoint ); précédent : 001074; suivant : 001076

Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.

Auteurs : Chung-Ke Chang [République populaire de Chine] ; Chia-Min Michael Chen ; Ming-Hui Chiang ; Yen-Lan Hsu ; Tai-Huang Huang

Source :

RBID : pubmed:23717688

Descripteurs français

English descriptors

Abstract

The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.

DOI: 10.1371/journal.pone.0065045
PubMed: 23717688


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23717688

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.</title>
<author>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Chia Min Michael" sort="Chen, Chia Min Michael" uniqKey="Chen C" first="Chia-Min Michael" last="Chen">Chia-Min Michael Chen</name>
</author>
<author>
<name sortKey="Chiang, Ming Hui" sort="Chiang, Ming Hui" uniqKey="Chiang M" first="Ming-Hui" last="Chiang">Ming-Hui Chiang</name>
</author>
<author>
<name sortKey="Hsu, Yen Lan" sort="Hsu, Yen Lan" uniqKey="Hsu Y" first="Yen-Lan" last="Hsu">Yen-Lan Hsu</name>
</author>
<author>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23717688</idno>
<idno type="pmid">23717688</idno>
<idno type="doi">10.1371/journal.pone.0065045</idno>
<idno type="wicri:Area/PubMed/Corpus">001190</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001190</idno>
<idno type="wicri:Area/PubMed/Curation">001190</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001190</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001075</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.</title>
<author>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Chia Min Michael" sort="Chen, Chia Min Michael" uniqKey="Chen C" first="Chia-Min Michael" last="Chen">Chia-Min Michael Chen</name>
</author>
<author>
<name sortKey="Chiang, Ming Hui" sort="Chiang, Ming Hui" uniqKey="Chiang M" first="Ming-Hui" last="Chiang">Ming-Hui Chiang</name>
</author>
<author>
<name sortKey="Hsu, Yen Lan" sort="Hsu, Yen Lan" uniqKey="Hsu Y" first="Yen-Lan" last="Hsu">Yen-Lan Hsu</name>
</author>
<author>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Calcium Carbonate</term>
<term>Citrates</term>
<term>Cystine (chemistry)</term>
<term>Drug Combinations</term>
<term>Magnesium Oxide</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Nucleocapsid Proteins (chemistry)</term>
<term>Nucleocapsid Proteins (genetics)</term>
<term>Phosphorylation</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Multimerization</term>
<term>Protein Processing, Post-Translational</term>
<term>SARS Virus</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Assemblage viral</term>
<term>Association médicamenteuse</term>
<term>Carbonate de calcium</term>
<term>Citrates</term>
<term>Cystine ()</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Modèles moléculaires</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Multimérisation de protéines</term>
<term>Mutagenèse dirigée</term>
<term>Oxyde de magnésium</term>
<term>Phosphorylation</term>
<term>Protéines nucléocapside ()</term>
<term>Protéines nucléocapside (génétique)</term>
<term>Substitution d'acide aminé</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cystine</term>
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Calcium Carbonate</term>
<term>Citrates</term>
<term>Drug Combinations</term>
<term>Magnesium Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines nucléocapside</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Phosphorylation</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Multimerization</term>
<term>Protein Processing, Post-Translational</term>
<term>SARS Virus</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Assemblage viral</term>
<term>Association médicamenteuse</term>
<term>Carbonate de calcium</term>
<term>Citrates</term>
<term>Cystine</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Modèles moléculaires</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Multimérisation de protéines</term>
<term>Mutagenèse dirigée</term>
<term>Oxyde de magnésium</term>
<term>Phosphorylation</term>
<term>Protéines nucléocapside</term>
<term>Substitution d'acide aminé</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23717688</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.</ArticleTitle>
<Pagination>
<MedlinePgn>e65045</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0065045</ELocationID>
<Abstract>
<AbstractText>The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Chung-ke</ForeName>
<Initials>CK</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Chia-Min Michael</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Ming-hui</ForeName>
<Initials>MH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Yen-lan</ForeName>
<Initials>YL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Tai-huang</ForeName>
<Initials>TH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002951">Citrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019590">Nucleocapsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C050615">Suby's G solution</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3A3U0GI71G</RegistryNumber>
<NameOfSubstance UI="D008277">Magnesium Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>48TCX9A1VT</RegistryNumber>
<NameOfSubstance UI="D003553">Cystine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H0G9379FGK</RegistryNumber>
<NameOfSubstance UI="D002119">Calcium Carbonate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002119" MajorTopicYN="N">Calcium Carbonate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002951" MajorTopicYN="N">Citrates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003553" MajorTopicYN="N">Cystine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004338" MajorTopicYN="N">Drug Combinations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008277" MajorTopicYN="N">Magnesium Oxide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019590" MajorTopicYN="N">Nucleocapsid Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="Y">SARS Virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23717688</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0065045</ArticleId>
<ArticleId IdType="pii">PONE-D-12-11392</ArticleId>
<ArticleId IdType="pmc">PMC3662775</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):5229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Mar;83(5):2255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Sci. 2010 Apr;99(4):1674-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19894271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(5):2340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11575-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2011 Jan;18(1):84-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2013 Jan 16;587(2):120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23178926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Oct 1;41(39):11525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12269796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Oct 25;315(2):269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2003 Dec;98(2):131-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Apr 2;316(2):476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 May 25;43(20):6059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 2004 Dec 1;112(1):15-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Oct 30;130(2):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6196910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 May 6;282(2):419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1674698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1871-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):23280-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 Aug;86(Pt 8):2255-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(17):11476-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Oct 24;579(25):5663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 2005 Nov-Dec;18(6):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16193532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 22;44(46):15351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2005 Dec;13(12):1859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16338414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2006 Jan;13(1):59-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(13):6612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16775348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7918-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Oct 3;45(39):11827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17002283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 May 11;368(4):1075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2007;423:25-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):061906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18233868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2008 Jul;8(4):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17881296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Jul 18;380(4):608-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18561946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Aug;275(16):4152-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(20):10616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656897</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Chia Min Michael" sort="Chen, Chia Min Michael" uniqKey="Chen C" first="Chia-Min Michael" last="Chen">Chia-Min Michael Chen</name>
<name sortKey="Chiang, Ming Hui" sort="Chiang, Ming Hui" uniqKey="Chiang M" first="Ming-Hui" last="Chiang">Ming-Hui Chiang</name>
<name sortKey="Hsu, Yen Lan" sort="Hsu, Yen Lan" uniqKey="Hsu Y" first="Yen-Lan" last="Hsu">Yen-Lan Hsu</name>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23717688
   |texte=   Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23717688" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021