Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.

Identifieur interne : 000E22 ( PubMed/Checkpoint ); précédent : 000E21; suivant : 000E23

Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.

Auteurs : Rebecca M. Mingo [États-Unis] ; James A. Simmons [États-Unis] ; Charles J. Shoemaker [États-Unis] ; Elizabeth A. Nelson [États-Unis] ; Kathryn L. Schornberg [États-Unis] ; Ryan S. D'Souza [États-Unis] ; James E. Casanova [États-Unis] ; Judith M. White [États-Unis]

Source :

RBID : pubmed:25552710

Descripteurs français

English descriptors

Abstract

Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity.

DOI: 10.1128/JVI.03398-14
PubMed: 25552710


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25552710

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.</title>
<author>
<name sortKey="Mingo, Rebecca M" sort="Mingo, Rebecca M" uniqKey="Mingo R" first="Rebecca M" last="Mingo">Rebecca M. Mingo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Simmons, James A" sort="Simmons, James A" uniqKey="Simmons J" first="James A" last="Simmons">James A. Simmons</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shoemaker, Charles J" sort="Shoemaker, Charles J" uniqKey="Shoemaker C" first="Charles J" last="Shoemaker">Charles J. Shoemaker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Elizabeth A" sort="Nelson, Elizabeth A" uniqKey="Nelson E" first="Elizabeth A" last="Nelson">Elizabeth A. Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schornberg, Kathryn L" sort="Schornberg, Kathryn L" uniqKey="Schornberg K" first="Kathryn L" last="Schornberg">Kathryn L. Schornberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="D Souza, Ryan S" sort="D Souza, Ryan S" uniqKey="D Souza R" first="Ryan S" last="D'Souza">Ryan S. D'Souza</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casanova, James E" sort="Casanova, James E" uniqKey="Casanova J" first="James E" last="Casanova">James E. Casanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="White, Judith M" sort="White, Judith M" uniqKey="White J" first="Judith M" last="White">Judith M. White</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA jw7g@virginia.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25552710</idno>
<idno type="pmid">25552710</idno>
<idno type="doi">10.1128/JVI.03398-14</idno>
<idno type="wicri:Area/PubMed/Corpus">000E82</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E82</idno>
<idno type="wicri:Area/PubMed/Curation">000E82</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E82</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E22</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.</title>
<author>
<name sortKey="Mingo, Rebecca M" sort="Mingo, Rebecca M" uniqKey="Mingo R" first="Rebecca M" last="Mingo">Rebecca M. Mingo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Simmons, James A" sort="Simmons, James A" uniqKey="Simmons J" first="James A" last="Simmons">James A. Simmons</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shoemaker, Charles J" sort="Shoemaker, Charles J" uniqKey="Shoemaker C" first="Charles J" last="Shoemaker">Charles J. Shoemaker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Elizabeth A" sort="Nelson, Elizabeth A" uniqKey="Nelson E" first="Elizabeth A" last="Nelson">Elizabeth A. Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schornberg, Kathryn L" sort="Schornberg, Kathryn L" uniqKey="Schornberg K" first="Kathryn L" last="Schornberg">Kathryn L. Schornberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="D Souza, Ryan S" sort="D Souza, Ryan S" uniqKey="D Souza R" first="Ryan S" last="D'Souza">Ryan S. D'Souza</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casanova, James E" sort="Casanova, James E" uniqKey="Casanova J" first="James E" last="Casanova">James E. Casanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="White, Judith M" sort="White, Judith M" uniqKey="White J" first="Judith M" last="White">Judith M. White</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA jw7g@virginia.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Virginia, Charlottesville, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport</term>
<term>Carrier Proteins (analysis)</term>
<term>Cell Line</term>
<term>Ebolavirus (physiology)</term>
<term>Endosomes (chemistry)</term>
<term>Endosomes (virology)</term>
<term>Humans</term>
<term>Lysosomes (chemistry)</term>
<term>Lysosomes (virology)</term>
<term>Membrane Glycoproteins (analysis)</term>
<term>SARS Virus (physiology)</term>
<term>Time Factors</term>
<term>Virosomes (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ebolavirus (physiologie)</term>
<term>Endosomes ()</term>
<term>Endosomes (virologie)</term>
<term>Facteurs temps</term>
<term>Glycoprotéines membranaires (analyse)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Lysosomes ()</term>
<term>Lysosomes (virologie)</term>
<term>Protéines de transport (analyse)</term>
<term>Pénétration virale</term>
<term>Transport biologique</term>
<term>Virosomes (métabolisme)</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carrier Proteins</term>
<term>Membrane Glycoproteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Endosomes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Virosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Virosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ebolavirus</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ebolavirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Endosomes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Endosomes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Time Factors</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Endosomes</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Lysosomes</term>
<term>Pénétration virale</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25552710</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.</ArticleTitle>
<Pagination>
<MedlinePgn>2931-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.03398-14</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1(+) LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1(+) LE/Lys, as a therapeutic target for SARS and EBOV.</AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mingo</LastName>
<ForeName>Rebecca M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Simmons</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shoemaker</LastName>
<ForeName>Charles J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Elizabeth A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schornberg</LastName>
<ForeName>Kathryn L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>D'Souza</LastName>
<ForeName>Ryan S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casanova</LastName>
<ForeName>James E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>Judith M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA jw7g@virginia.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK058536</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI103601</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI093708</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI103601</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI007046</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK58536</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI055432</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI093708</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C106881">NPC1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022701">Virosomes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="Y">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029043" MajorTopicYN="N">Ebolavirus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022701" MajorTopicYN="N">Virosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25552710</ArticleId>
<ArticleId IdType="pii">JVI.03398-14</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.03398-14</ArticleId>
<ArticleId IdType="pmc">PMC4325712</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2011 Mar 5;377(9768):849-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21084112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 15;477(7364):340-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jan;86(1):364-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22031933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Jan;13(1):94-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21973056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Mar;86(6):3284-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jan;4(1):83-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2011 Jul;1(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Mar 27;51(12):2515-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22369502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Feb;4(2):258-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22470835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Apr;2(2):206-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May;10(5):317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22491356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Apr 18;31(8):1947-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22395071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jun;86(12):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Oct 10;432(1):20-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Aug;86(16):8346-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2012;6(12):e1923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Dec;4(12):3336-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23342362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23441171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2013 Jun 19;5(190):190ra79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):8017-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Dec;100(3):605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24173224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Feb;11(2):121-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24481215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Apr;88(8):4389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Apr;88(8):4353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Aug;58(8):4885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Sep 12;345(6202):1369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25214632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 11;275(6):4013-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10660558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Mar;12(3):601-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(10):4855-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2003 Feb 1;12(3):257-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9280-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(14):7344-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 10;308(5728):1643-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Jul;3(7):e233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15954801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 9;122(5):735-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Mar 10;124(5):997-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16530046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(8):4174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16571833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Aug 15;378(1):21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18554681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008;4(8):e1000141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18769720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jan;83(1):440-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(1):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19846533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2972-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jun;84(11):5687-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Lab Med. 2010 Mar;30(1):161-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Jun 25;7(6):488-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2010 Aug;78(2):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20466822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(7):e1000994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20657818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Biochem Biophys. 2008 Apr;45(2):75-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21086720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011;7(1):e1001258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 15;477(7364):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Mingo, Rebecca M" sort="Mingo, Rebecca M" uniqKey="Mingo R" first="Rebecca M" last="Mingo">Rebecca M. Mingo</name>
</region>
<name sortKey="Casanova, James E" sort="Casanova, James E" uniqKey="Casanova J" first="James E" last="Casanova">James E. Casanova</name>
<name sortKey="D Souza, Ryan S" sort="D Souza, Ryan S" uniqKey="D Souza R" first="Ryan S" last="D'Souza">Ryan S. D'Souza</name>
<name sortKey="Nelson, Elizabeth A" sort="Nelson, Elizabeth A" uniqKey="Nelson E" first="Elizabeth A" last="Nelson">Elizabeth A. Nelson</name>
<name sortKey="Schornberg, Kathryn L" sort="Schornberg, Kathryn L" uniqKey="Schornberg K" first="Kathryn L" last="Schornberg">Kathryn L. Schornberg</name>
<name sortKey="Shoemaker, Charles J" sort="Shoemaker, Charles J" uniqKey="Shoemaker C" first="Charles J" last="Shoemaker">Charles J. Shoemaker</name>
<name sortKey="Simmons, James A" sort="Simmons, James A" uniqKey="Simmons J" first="James A" last="Simmons">James A. Simmons</name>
<name sortKey="White, Judith M" sort="White, Judith M" uniqKey="White J" first="Judith M" last="White">Judith M. White</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000E22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25552710
   |texte=   Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25552710" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021