Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis.

Identifieur interne : 000E12 ( PubMed/Checkpoint ); précédent : 000E11; suivant : 000E13

Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis.

Auteurs : Jean Kaoru Millet [États-Unis] ; Gary R. Whittaker [États-Unis]

Source :

RBID : pubmed:25445340

Descripteurs français

English descriptors

Abstract

Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity.

DOI: 10.1016/j.virusres.2014.11.021
PubMed: 25445340


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25445340

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis.</title>
<author>
<name sortKey="Millet, Jean Kaoru" sort="Millet, Jean Kaoru" uniqKey="Millet J" first="Jean Kaoru" last="Millet">Jean Kaoru Millet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853, United States. Electronic address: grw7@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25445340</idno>
<idno type="pmid">25445340</idno>
<idno type="doi">10.1016/j.virusres.2014.11.021</idno>
<idno type="wicri:Area/PubMed/Corpus">000F03</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F03</idno>
<idno type="wicri:Area/PubMed/Curation">000F03</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000F03</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E12</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E12</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis.</title>
<author>
<name sortKey="Millet, Jean Kaoru" sort="Millet, Jean Kaoru" uniqKey="Millet J" first="Jean Kaoru" last="Millet">Jean Kaoru Millet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853, United States. Electronic address: grw7@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Virus research</title>
<idno type="eISSN">1872-7492</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coronaviridae (pathogenicity)</term>
<term>Coronaviridae (physiology)</term>
<term>Host Specificity</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Proteolysis</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Viral Tropism</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Coronaviridae (pathogénicité)</term>
<term>Coronaviridae (physiologie)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Protéolyse</term>
<term>Spécificité d'hôte</term>
<term>Tropisme viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide Hydrolases</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Peptide hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Host Specificity</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Proteolysis</term>
<term>Viral Tropism</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Protéolyse</term>
<term>Spécificité d'hôte</term>
<term>Tropisme viral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25445340</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-7492</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>202</Volume>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Virus research</Title>
<ISOAbbreviation>Virus Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>120-34</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.virusres.2014.11.021</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0168-1702(14)00496-1</ELocationID>
<Abstract>
<AbstractText>Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. </AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Millet</LastName>
<ForeName>Jean Kaoru</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whittaker</LastName>
<ForeName>Gary R</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Cornell University, C4 127 VMC, Ithaca, NY 14853, United States. Electronic address: grw7@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI111085</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Virus Res</MedlineTA>
<NlmUniqueID>8410979</NlmUniqueID>
<ISSNLinking>0168-1702</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003332" MajorTopicYN="N">Coronaviridae</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="N">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056189" MajorTopicYN="Y">Viral Tropism</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cleavage activation</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Pathogenesis</Keyword>
<Keyword MajorTopicYN="N">Protease</Keyword>
<Keyword MajorTopicYN="N">Spike protein</Keyword>
<Keyword MajorTopicYN="N">Tropism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
<ArticleId IdType="pii">S0168-1702(14)00496-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.virusres.2014.11.021</ArticleId>
<ArticleId IdType="pmc">PMC4465284</ArticleId>
<ArticleId IdType="mid">NIHMS644271</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2008 Aug 8;283(32):21899-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18559340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2013 Jun 28;288(26):19154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23653353</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1984 Dec;139(2):303-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6516214</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):46854-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2009 Nov 20;284(47):32725-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1997 Jun 23;233(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9201212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 May;72(5):4508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9557750</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Jun;82(12):6078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400867</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Jul;20(7):1231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24964193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Jan;85(2):324-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2829180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2012;2:261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355773</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1973 Nov;56(1):172-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4795670</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2013 Dec;100(3):605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121034</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Pathog Dis. 2013 Nov;69(2):87-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23821437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19970-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1990 Dec;71 ( Pt 12):3075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2177097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Jul 20;359(1):174-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533109</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Feb;14(2):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng Des Sel. 2004 Jan;17(1):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985543</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbiol Immunol. 2008 Feb;52(2):118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18380809</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Jul 25;450(2):1070-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24978308</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 1993 Jun;1(3):81-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8143121</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2014 Sep 10;16(3):328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25211075</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2005 Mar 28;579(9):1945-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15792801</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2006 Sep;5(9):785-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16955069</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2012 Nov 25;433(2):421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22995191</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Oct;80(19):9896-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2006 Sep 30;353(2):388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jan 21;326(3):554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2012 Apr;165(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22280883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Feb;88(3):1673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24257604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Aug;82(16):8112-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550663</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Histochem Cytochem. 1997 Jan;45(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9010463</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Jul;88(14):7952-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24807723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2012 Dec 5;434(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23051710</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Cancer. 2006 Oct;6(10):764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2009 Aug 28;284(35):23177-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19487698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2010 Jan;6(1):e1000718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20062797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690931</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2007 Oct 24;2(10):e1082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17957264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2012 May;11(5):367-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679642</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5768-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8639-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912312</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 May;85(9):4122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325420</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1975 Dec;68(2):440-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">128196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1993 May 21;73(4):823-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8500173</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Aug;13(8):751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999443</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8967-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Prog Mol Biol Transl Sci. 2011;99:1-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21238933</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1988 Apr 8;53(1):55-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2450679</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Virol. 2014 Jun;6:55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24762977</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2008 Dec 10;132(3-4):235-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10696-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 1994 Feb;2(2):39-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8162439</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):31642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418598</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1989 Jan;63(1):436-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2521188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Jun 25;274(26):18237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10373425</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 Oct;3(10):753-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12360192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Jul 23;285(30):22758-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):712-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971274</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11493675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Sep;84(17):8683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2012 Nov 20;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2009 Nov 17;4(11):e7870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Sep;83(17):8744-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068237</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):4953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2014 Feb 25;5(2):e00884-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24570370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2007 Apr 10;360(2):264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013;8(1):e52752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23308119</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Pept Lett. 2009;16(7):766-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19601906</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Dec;87(23):12552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027332</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):6048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141003</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1988 Nov;26(11):2235-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2853174</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Oct 14;280(41):34513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103126</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Dec;81(Pt 12):2867-2871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Exp Biol Med (Maywood). 2009 Oct;234(10):1117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 May;87(9):5161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23449787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):4943-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554652</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1522-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16432208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Mol Sci. 2011 Feb 08;12(2):1060-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2014 Jan;101:45-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24184128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1997 Jan 6;227(1):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9007076</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2014 Oct 13;191:21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25086180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1995 Oct 1;212(2):622-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7571432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Feline Med Surg. 2009 Apr;11(4):225-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19254859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2013 Jul;19(7):1066-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23763835</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1987 Dec;161(2):479-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2825419</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biomaterials. 2013 Oct;34(32):7895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23886734</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2012 Jul;18(7):1089-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22709821</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):912-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999444</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2011 Oct;156(10):1749-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21667287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2015 Mar 15;211(6):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25057042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2000 Feb;18(2):187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657126</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2010 Jan;16(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20031035</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Oct 03;8(10):e76469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098509</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2011 Apr;156(4):577-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21210162</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1998 Mar 30;243(1):150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9527924</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2013;9(4):e1003309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593008</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 2003 Jul;10(7):520-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12794637</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):6794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 May 10;413(2):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1973 Mar;52(1):199-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4139805</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Oct;88(20):12087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122802</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8887-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562523</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2010 Dec;277(23):4888-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20977675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 May 5;281(18):12824-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520377</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Aug;85(15):7872-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2000 Jun;7(6):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873836</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Millet, Jean Kaoru" sort="Millet, Jean Kaoru" uniqKey="Millet J" first="Jean Kaoru" last="Millet">Jean Kaoru Millet</name>
</region>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000E12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25445340
   |texte=   Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25445340" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021