Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Small molecules targeting viral RNA.

Identifieur interne : 000B92 ( PubMed/Checkpoint ); précédent : 000B91; suivant : 000B93

Small molecules targeting viral RNA.

Auteurs : Thomas Hermann [États-Unis]

Source :

RBID : pubmed:27307213

Descripteurs français

English descriptors

Abstract

Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website.

DOI: 10.1002/wrna.1373
PubMed: 27307213


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27307213

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Small molecules targeting viral RNA.</title>
<author>
<name sortKey="Hermann, Thomas" sort="Hermann, Thomas" uniqKey="Hermann T" first="Thomas" last="Hermann">Thomas Hermann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. tch@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27307213</idno>
<idno type="pmid">27307213</idno>
<idno type="doi">10.1002/wrna.1373</idno>
<idno type="wicri:Area/PubMed/Corpus">000C37</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C37</idno>
<idno type="wicri:Area/PubMed/Curation">000C37</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C37</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000B92</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000B92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Small molecules targeting viral RNA.</title>
<author>
<name sortKey="Hermann, Thomas" sort="Hermann, Thomas" uniqKey="Hermann T" first="Thomas" last="Hermann">Thomas Hermann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. tch@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Wiley interdisciplinary reviews. RNA</title>
<idno type="eISSN">1757-7012</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Humans</term>
<term>RNA, Viral (antagonists & inhibitors)</term>
<term>RNA, Viral (genetics)</term>
<term>Small Molecule Libraries (pharmacology)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral (antagonistes et inhibiteurs)</term>
<term>ARN viral (génétique)</term>
<term>Animaux</term>
<term>Antiviraux (pharmacologie)</term>
<term>Bibliothèques de petites molécules (pharmacologie)</term>
<term>Humains</term>
<term>Réplication virale ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Small Molecule Libraries</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>ARN viral</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Bibliothèques de petites molécules</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Réplication virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27307213</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1757-7012</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>Wiley interdisciplinary reviews. RNA</Title>
<ISOAbbreviation>Wiley Interdiscip Rev RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>Small molecules targeting viral RNA.</ArticleTitle>
<Pagination>
<MedlinePgn>726-743</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/wrna.1373</ELocationID>
<Abstract>
<AbstractText>Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website.</AbstractText>
<CopyrightInformation>© 2016 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hermann</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. tch@ucsd.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Drug Discovery Innovation, University of California, San Diego, La Jolla, CA, USA. tch@ucsd.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Wiley Interdiscip Rev RNA</MedlineTA>
<NlmUniqueID>101536955</NlmUniqueID>
<ISSNLinking>1757-7004</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054852">Small Molecule Libraries</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054852" MajorTopicYN="N">Small Molecule Libraries</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27307213</ArticleId>
<ArticleId IdType="doi">10.1002/wrna.1373</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Hermann, Thomas" sort="Hermann, Thomas" uniqKey="Hermann T" first="Thomas" last="Hermann">Thomas Hermann</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000B92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27307213
   |texte=   Small molecules targeting viral RNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27307213" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021