Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study.

Identifieur interne : 000962 ( PubMed/Checkpoint ); précédent : 000961; suivant : 000963

Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study.

Auteurs : Anirban Ghosh [Inde] ; Dipita Bhattacharyya [Inde] ; Anirban Bhunia [Inde]

Source :

RBID : pubmed:29038024

Descripteurs français

English descriptors

Abstract

In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T55VYVYSRVK63) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis.

DOI: 10.1016/j.bbamem.2017.10.015
PubMed: 29038024


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29038024

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study.</title>
<author>
<name sortKey="Ghosh, Anirban" sort="Ghosh, Anirban" uniqKey="Ghosh A" first="Anirban" last="Ghosh">Anirban Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054</wicri:regionArea>
<wicri:noRegion>Kolkata 700054</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhattacharyya, Dipita" sort="Bhattacharyya, Dipita" uniqKey="Bhattacharyya D" first="Dipita" last="Bhattacharyya">Dipita Bhattacharyya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054</wicri:regionArea>
<wicri:noRegion>Kolkata 700054</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhunia, Anirban" sort="Bhunia, Anirban" uniqKey="Bhunia A" first="Anirban" last="Bhunia">Anirban Bhunia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India. Electronic address: bhunia@jcbose.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054</wicri:regionArea>
<wicri:noRegion>Kolkata 700054</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29038024</idno>
<idno type="pmid">29038024</idno>
<idno type="doi">10.1016/j.bbamem.2017.10.015</idno>
<idno type="wicri:Area/PubMed/Corpus">000A72</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A72</idno>
<idno type="wicri:Area/PubMed/Curation">000A72</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A72</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000962</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000962</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study.</title>
<author>
<name sortKey="Ghosh, Anirban" sort="Ghosh, Anirban" uniqKey="Ghosh A" first="Anirban" last="Ghosh">Anirban Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054</wicri:regionArea>
<wicri:noRegion>Kolkata 700054</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhattacharyya, Dipita" sort="Bhattacharyya, Dipita" uniqKey="Bhattacharyya D" first="Dipita" last="Bhattacharyya">Dipita Bhattacharyya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054</wicri:regionArea>
<wicri:noRegion>Kolkata 700054</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhunia, Anirban" sort="Bhunia, Anirban" uniqKey="Bhunia A" first="Anirban" last="Bhunia">Anirban Bhunia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India. Electronic address: bhunia@jcbose.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054</wicri:regionArea>
<wicri:noRegion>Kolkata 700054</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta. Biomembranes</title>
<idno type="ISSN">0005-2736</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Lipid Bilayers (chemistry)</term>
<term>Lipid Bilayers (metabolism)</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Micelles</term>
<term>Models, Molecular</term>
<term>Oligopeptides (chemistry)</term>
<term>Oligopeptides (metabolism)</term>
<term>Phosphorylcholine (analogs & derivatives)</term>
<term>Phosphorylcholine (chemistry)</term>
<term>Protein Binding</term>
<term>Protein Structure, Secondary</term>
<term>Sodium Dodecyl Sulfate (chemistry)</term>
<term>Unilamellar Liposomes (chemistry)</term>
<term>Unilamellar Liposomes (metabolism)</term>
<term>Viral Envelope Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Dichroïsme circulaire</term>
<term>Dodécyl-sulfate de sodium ()</term>
<term>Double couche lipidique ()</term>
<term>Double couche lipidique (métabolisme)</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Liposomes unilamellaires ()</term>
<term>Liposomes unilamellaires (métabolisme)</term>
<term>Micelles</term>
<term>Modèles moléculaires</term>
<term>Oligopeptides ()</term>
<term>Oligopeptides (métabolisme)</term>
<term>Phosphoryl-choline ()</term>
<term>Phosphoryl-choline (analogues et dérivés)</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Phosphorylcholine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lipid Bilayers</term>
<term>Oligopeptides</term>
<term>Phosphorylcholine</term>
<term>Sodium Dodecyl Sulfate</term>
<term>Unilamellar Liposomes</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lipid Bilayers</term>
<term>Oligopeptides</term>
<term>Unilamellar Liposomes</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Phosphoryl-choline</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Double couche lipidique</term>
<term>Liposomes unilamellaires</term>
<term>Oligopeptides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Micelles</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Dichroïsme circulaire</term>
<term>Dodécyl-sulfate de sodium</term>
<term>Double couche lipidique</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Liposomes unilamellaires</term>
<term>Micelles</term>
<term>Modèles moléculaires</term>
<term>Oligopeptides</term>
<term>Phosphoryl-choline</term>
<term>Protéines de l'enveloppe virale</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T
<sup>55</sup>
VYVYSRVK
<sup>63</sup>
) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29038024</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0005-2736</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1860</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta. Biomembranes</Title>
<ISOAbbreviation>Biochim Biophys Acta Biomembr</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study.</ArticleTitle>
<Pagination>
<MedlinePgn>335-346</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0005-2736(17)30333-4</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbamem.2017.10.015</ELocationID>
<Abstract>
<AbstractText>In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T
<sup>55</sup>
VYVYSRVK
<sup>63</sup>
) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Anirban</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhattacharyya</LastName>
<ForeName>Dipita</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhunia</LastName>
<ForeName>Anirban</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India. Electronic address: bhunia@jcbose.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta Biomembr</MedlineTA>
<NlmUniqueID>101731713</NlmUniqueID>
<ISSNLinking>0005-2736</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008051">Lipid Bilayers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008823">Micelles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053835">Unilamellar Liposomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>107-73-3</RegistryNumber>
<NameOfSubstance UI="D010767">Phosphorylcholine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>368GB5141J</RegistryNumber>
<NameOfSubstance UI="D012967">Sodium Dodecyl Sulfate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53949-18-1</RegistryNumber>
<NameOfSubstance UI="C028810">dodecylphosphocholine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008051" MajorTopicYN="N">Lipid Bilayers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008823" MajorTopicYN="Y">Micelles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009842" MajorTopicYN="N">Oligopeptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010767" MajorTopicYN="N">Phosphorylcholine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012967" MajorTopicYN="N">Sodium Dodecyl Sulfate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053835" MajorTopicYN="N">Unilamellar Liposomes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Micelle</Keyword>
<Keyword MajorTopicYN="Y">NMR</Keyword>
<Keyword MajorTopicYN="Y">NOESY</Keyword>
<Keyword MajorTopicYN="Y">Paramagnetic relaxation</Keyword>
<Keyword MajorTopicYN="Y">SARS CoV</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29038024</ArticleId>
<ArticleId IdType="pii">S0005-2736(17)30333-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbamem.2017.10.015</ArticleId>
<ArticleId IdType="pmc">PMC7094419</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2014 May 2;289(18):12535-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24668816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2012 Oct 9;51(40):7863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978677</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2005 Jul 6;127(26):9358-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15984849</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1992 Feb 18;31(6):1647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1737021</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2012 May;1818(5):1250-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22285780</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Aug 21;10(8):e0135976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26295714</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2005 Sep;89(3):1874-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ChemMedChem. 2014 Sep;9(9):2059-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25080019</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2004;278:353-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318003</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Oct;11(5):560-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11785756</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1996 Dec;8(4):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008363</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Dec;1768(12):3282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17854761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem Lett. 2014 Feb 6;5(3):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26276603</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2016 Jun 17;291(25):13301-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27137928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ChemMedChem. 2014 Sep;9(9):2052-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25044630</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1988 Jul;172(1):61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3189776</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2011 Mar;278(5):687-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21214860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 2010 Apr;46(4):257-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213252</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chemistry. 2009;15(9):2036-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19180607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1997 Dec 2;36(48):14845-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398206</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W63-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845087</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Feb;1798(2):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19635451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 Jul 5;415(2):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21524776</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2015 Apr 7;54(13):2249-2261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25785896</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1981 May 26;20(11):3096-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7248271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047962</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Jan;5(1):67-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):1273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773403</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2009 Jul;5(7):e1000511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19593379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biosyst. 2014 Jun;10(6):1596-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714742</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:333-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756495</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1981 Dec 22;20(26):7333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7326228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Apr;1858(4):800-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26724203</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Sep;6(2):135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589602</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2001;339:271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11462816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chembiochem. 2004 Apr 2;5(4):467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15185370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Ghosh, Anirban" sort="Ghosh, Anirban" uniqKey="Ghosh A" first="Anirban" last="Ghosh">Anirban Ghosh</name>
</noRegion>
<name sortKey="Bhattacharyya, Dipita" sort="Bhattacharyya, Dipita" uniqKey="Bhattacharyya D" first="Dipita" last="Bhattacharyya">Dipita Bhattacharyya</name>
<name sortKey="Bhunia, Anirban" sort="Bhunia, Anirban" uniqKey="Bhunia A" first="Anirban" last="Bhunia">Anirban Bhunia</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000962 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000962 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:29038024
   |texte=   Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:29038024" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021