Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing.

Identifieur interne : 000956 ( PubMed/Checkpoint ); précédent : 000955; suivant : 000957

Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing.

Auteurs : Aatif Alam [États-Unis] ; Linda Jiang [États-Unis] ; Gregory A. Kittleson [États-Unis] ; Kenneth D. Steadman [États-Unis] ; Somen Nandi [États-Unis] ; Joshua L. Fuqua [États-Unis] ; Kenneth E. Palmer [États-Unis] ; Daniel Tusé [États-Unis] ; Karen A. Mcdonald [États-Unis]

Source :

RBID : pubmed:30087892

Abstract

Griffithsin is a marine algal lectin that exhibits broad-spectrum antiviral activity by binding oligomannose glycans on viral envelope glycoproteins, including those found in HIV-1, HSV-2, SARS, HCV and other enveloped viruses. An efficient, scalable and cost-effective manufacturing process for Griffithsin is essential for the adoption of this drug in human antiviral prophylaxis and therapy, particularly in cost-sensitive indications such as topical microbicides for HIV-1 prevention. The production of certain classes of recombinant biologics in plants can offer scalability, cost and environmental impact advantages over traditional biomanufacturing platforms. Previously, we showed the technical viability of producing recombinant Griffithsin in plants. In this study, we conducted a technoeconomic analysis (TEA) of plant-produced Griffithsin manufactured at commercial launch volumes for use in HIV microbicides. Data derived from multiple non-sequential manufacturing batches conducted at pilot scale and existing facility designs were used to build a technoeconomic model using SuperPro Designer® modeling software. With an assumed commercial launch volume of 20 kg Griffithsin/year for 6.7 million doses of Griffithsin microbicide at 3 mg/dose, a transient vector expression yield of 0.52 g Griffithsin/kg leaf biomass, recovery efficiency of 70%, and purity of >99%, we calculated a manufacturing cost for the drug substance of $0.32/dose and estimated a bulk product cost of $0.38/dose assuming a 20% net fee for a contract manufacturing organization (CMO). This is the first report modeling the manufacturing economics of Griffithsin. The process analyzed is readily scalable and subject to efficiency improvements and could provide the needed market volumes of the lectin within an acceptable range of costs, even for cost-constrained products such as microbicides. The manufacturing process was also assessed for environmental, health and safety impact and found to have a highly favorable environmental output index with negligible risks to health and safety. The results of this study help validate the plant-based manufacturing platform and should assist in selecting preferred indications for Griffithsin as a novel drug.

DOI: 10.3389/fbioe.2018.00102
PubMed: 30087892


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30087892

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing.</title>
<author>
<name sortKey="Alam, Aatif" sort="Alam, Aatif" uniqKey="Alam A" first="Aatif" last="Alam">Aatif Alam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Linda" sort="Jiang, Linda" uniqKey="Jiang L" first="Linda" last="Jiang">Linda Jiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kittleson, Gregory A" sort="Kittleson, Gregory A" uniqKey="Kittleson G" first="Gregory A" last="Kittleson">Gregory A. Kittleson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steadman, Kenneth D" sort="Steadman, Kenneth D" uniqKey="Steadman K" first="Kenneth D" last="Steadman">Kenneth D. Steadman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nandi, Somen" sort="Nandi, Somen" uniqKey="Nandi S" first="Somen" last="Nandi">Somen Nandi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fuqua, Joshua L" sort="Fuqua, Joshua L" uniqKey="Fuqua J" first="Joshua L" last="Fuqua">Joshua L. Fuqua</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Predictive Medicine, University of Louisville, Louisville, KY, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Predictive Medicine, University of Louisville, Louisville, KY</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Kenneth E" sort="Palmer, Kenneth E" uniqKey="Palmer K" first="Kenneth E" last="Palmer">Kenneth E. Palmer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Predictive Medicine, University of Louisville, Louisville, KY, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Predictive Medicine, University of Louisville, Louisville, KY</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tuse, Daniel" sort="Tuse, Daniel" uniqKey="Tuse D" first="Daniel" last="Tusé">Daniel Tusé</name>
<affiliation wicri:level="2">
<nlm:affiliation>Intrucept Biomedicine, LLC, Sacramento, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Intrucept Biomedicine, LLC, Sacramento, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcdonald, Karen A" sort="Mcdonald, Karen A" uniqKey="Mcdonald K" first="Karen A" last="Mcdonald">Karen A. Mcdonald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30087892</idno>
<idno type="pmid">30087892</idno>
<idno type="doi">10.3389/fbioe.2018.00102</idno>
<idno type="wicri:Area/PubMed/Corpus">000987</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000987</idno>
<idno type="wicri:Area/PubMed/Curation">000987</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000987</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000956</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000956</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing.</title>
<author>
<name sortKey="Alam, Aatif" sort="Alam, Aatif" uniqKey="Alam A" first="Aatif" last="Alam">Aatif Alam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Linda" sort="Jiang, Linda" uniqKey="Jiang L" first="Linda" last="Jiang">Linda Jiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kittleson, Gregory A" sort="Kittleson, Gregory A" uniqKey="Kittleson G" first="Gregory A" last="Kittleson">Gregory A. Kittleson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steadman, Kenneth D" sort="Steadman, Kenneth D" uniqKey="Steadman K" first="Kenneth D" last="Steadman">Kenneth D. Steadman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nandi, Somen" sort="Nandi, Somen" uniqKey="Nandi S" first="Somen" last="Nandi">Somen Nandi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fuqua, Joshua L" sort="Fuqua, Joshua L" uniqKey="Fuqua J" first="Joshua L" last="Fuqua">Joshua L. Fuqua</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Predictive Medicine, University of Louisville, Louisville, KY, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Predictive Medicine, University of Louisville, Louisville, KY</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Kenneth E" sort="Palmer, Kenneth E" uniqKey="Palmer K" first="Kenneth E" last="Palmer">Kenneth E. Palmer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Predictive Medicine, University of Louisville, Louisville, KY, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Predictive Medicine, University of Louisville, Louisville, KY</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tuse, Daniel" sort="Tuse, Daniel" uniqKey="Tuse D" first="Daniel" last="Tusé">Daniel Tusé</name>
<affiliation wicri:level="2">
<nlm:affiliation>Intrucept Biomedicine, LLC, Sacramento, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Intrucept Biomedicine, LLC, Sacramento, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcdonald, Karen A" sort="Mcdonald, Karen A" uniqKey="Mcdonald K" first="Karen A" last="Mcdonald">Karen A. Mcdonald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, University of California, Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in bioengineering and biotechnology</title>
<idno type="ISSN">2296-4185</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Griffithsin is a marine algal lectin that exhibits broad-spectrum antiviral activity by binding oligomannose glycans on viral envelope glycoproteins, including those found in HIV-1, HSV-2, SARS, HCV and other enveloped viruses. An efficient, scalable and cost-effective manufacturing process for Griffithsin is essential for the adoption of this drug in human antiviral prophylaxis and therapy, particularly in cost-sensitive indications such as topical microbicides for HIV-1 prevention. The production of certain classes of recombinant biologics in plants can offer scalability, cost and environmental impact advantages over traditional biomanufacturing platforms. Previously, we showed the technical viability of producing recombinant Griffithsin in plants. In this study, we conducted a technoeconomic analysis (TEA) of plant-produced Griffithsin manufactured at commercial launch volumes for use in HIV microbicides. Data derived from multiple non-sequential manufacturing batches conducted at pilot scale and existing facility designs were used to build a technoeconomic model using SuperPro Designer
<sup>®</sup>
modeling software. With an assumed commercial launch volume of 20 kg Griffithsin/year for 6.7 million doses of Griffithsin microbicide at 3 mg/dose, a transient vector expression yield of 0.52 g Griffithsin/kg leaf biomass, recovery efficiency of 70%, and purity of >99%, we calculated a manufacturing cost for the drug substance of $0.32/dose and estimated a bulk product cost of $0.38/dose assuming a 20% net fee for a contract manufacturing organization (CMO). This is the first report modeling the manufacturing economics of Griffithsin. The process analyzed is readily scalable and subject to efficiency improvements and could provide the needed market volumes of the lectin within an acceptable range of costs, even for cost-constrained products such as microbicides. The manufacturing process was also assessed for environmental, health and safety impact and found to have a highly favorable environmental output index with negligible risks to health and safety. The results of this study help validate the plant-based manufacturing platform and should assist in selecting preferred indications for Griffithsin as a novel drug.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30087892</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2296-4185</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in bioengineering and biotechnology</Title>
<ISOAbbreviation>Front Bioeng Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing.</ArticleTitle>
<Pagination>
<MedlinePgn>102</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fbioe.2018.00102</ELocationID>
<Abstract>
<AbstractText>Griffithsin is a marine algal lectin that exhibits broad-spectrum antiviral activity by binding oligomannose glycans on viral envelope glycoproteins, including those found in HIV-1, HSV-2, SARS, HCV and other enveloped viruses. An efficient, scalable and cost-effective manufacturing process for Griffithsin is essential for the adoption of this drug in human antiviral prophylaxis and therapy, particularly in cost-sensitive indications such as topical microbicides for HIV-1 prevention. The production of certain classes of recombinant biologics in plants can offer scalability, cost and environmental impact advantages over traditional biomanufacturing platforms. Previously, we showed the technical viability of producing recombinant Griffithsin in plants. In this study, we conducted a technoeconomic analysis (TEA) of plant-produced Griffithsin manufactured at commercial launch volumes for use in HIV microbicides. Data derived from multiple non-sequential manufacturing batches conducted at pilot scale and existing facility designs were used to build a technoeconomic model using SuperPro Designer
<sup>®</sup>
modeling software. With an assumed commercial launch volume of 20 kg Griffithsin/year for 6.7 million doses of Griffithsin microbicide at 3 mg/dose, a transient vector expression yield of 0.52 g Griffithsin/kg leaf biomass, recovery efficiency of 70%, and purity of >99%, we calculated a manufacturing cost for the drug substance of $0.32/dose and estimated a bulk product cost of $0.38/dose assuming a 20% net fee for a contract manufacturing organization (CMO). This is the first report modeling the manufacturing economics of Griffithsin. The process analyzed is readily scalable and subject to efficiency improvements and could provide the needed market volumes of the lectin within an acceptable range of costs, even for cost-constrained products such as microbicides. The manufacturing process was also assessed for environmental, health and safety impact and found to have a highly favorable environmental output index with negligible risks to health and safety. The results of this study help validate the plant-based manufacturing platform and should assist in selecting preferred indications for Griffithsin as a novel drug.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alam</LastName>
<ForeName>Aatif</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Linda</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kittleson</LastName>
<ForeName>Gregory A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steadman</LastName>
<ForeName>Kenneth D</ForeName>
<Initials>KD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nandi</LastName>
<ForeName>Somen</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Global HealthShare Initiative, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fuqua</LastName>
<ForeName>Joshua L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Center for Predictive Medicine, University of Louisville, Louisville, KY, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Palmer</LastName>
<ForeName>Kenneth E</ForeName>
<Initials>KE</Initials>
<AffiliationInfo>
<Affiliation>Center for Predictive Medicine, University of Louisville, Louisville, KY, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tusé</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Intrucept Biomedicine, LLC, Sacramento, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McDonald</LastName>
<ForeName>Karen A</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Global HealthShare Initiative, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U19 AI113182</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Bioeng Biotechnol</MedlineTA>
<NlmUniqueID>101632513</NlmUniqueID>
<ISSNLinking>2296-4185</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Griffithsin</Keyword>
<Keyword MajorTopicYN="N">antiviral</Keyword>
<Keyword MajorTopicYN="N">biomanufacturing</Keyword>
<Keyword MajorTopicYN="N">cost</Keyword>
<Keyword MajorTopicYN="N">economics</Keyword>
<Keyword MajorTopicYN="N">microbicide</Keyword>
<Keyword MajorTopicYN="N">modeling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30087892</ArticleId>
<ArticleId IdType="doi">10.3389/fbioe.2018.00102</ArticleId>
<ArticleId IdType="pmc">PMC6066545</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2014;375:155-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23949286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Mar 15;255(2):312-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 05;5(11):e13646</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:256135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24977145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Oncol. 2010 Dec;21(12):2420-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2006 May;47(1):194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16300962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Oct;13(8):1160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26176205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Jun;13(5):708-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25470212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MAbs. 2016 Nov/Dec;8(8):1456-1466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27559626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2014 Jan 20;449:163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 Feb 22;15:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25887919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin. 2011 Mar;7(3):322-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21358286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2003 May;33(5-6):479-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1966 Nov;30(3):341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5921640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6099-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19332801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(5):2511-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20032190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jun;8(5):638-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20514694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014;58(1):120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24145548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 11;280(10):9345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2011;12(5):3220-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21686181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Oct;13(8):1180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18645180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Nov;55(11):5159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2014 Jan 09;14:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24405719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1998 Jul;14(4):607-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9694683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:45-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fam Plann Perspect. 1999 Jan-Feb;31(1):16-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10029928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jun;8(5):529-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1997 Mar 20;53(6):575-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18634058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2012 May;54(10):1504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Kentucky</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Alam, Aatif" sort="Alam, Aatif" uniqKey="Alam A" first="Aatif" last="Alam">Aatif Alam</name>
</region>
<name sortKey="Fuqua, Joshua L" sort="Fuqua, Joshua L" uniqKey="Fuqua J" first="Joshua L" last="Fuqua">Joshua L. Fuqua</name>
<name sortKey="Jiang, Linda" sort="Jiang, Linda" uniqKey="Jiang L" first="Linda" last="Jiang">Linda Jiang</name>
<name sortKey="Kittleson, Gregory A" sort="Kittleson, Gregory A" uniqKey="Kittleson G" first="Gregory A" last="Kittleson">Gregory A. Kittleson</name>
<name sortKey="Mcdonald, Karen A" sort="Mcdonald, Karen A" uniqKey="Mcdonald K" first="Karen A" last="Mcdonald">Karen A. Mcdonald</name>
<name sortKey="Nandi, Somen" sort="Nandi, Somen" uniqKey="Nandi S" first="Somen" last="Nandi">Somen Nandi</name>
<name sortKey="Palmer, Kenneth E" sort="Palmer, Kenneth E" uniqKey="Palmer K" first="Kenneth E" last="Palmer">Kenneth E. Palmer</name>
<name sortKey="Steadman, Kenneth D" sort="Steadman, Kenneth D" uniqKey="Steadman K" first="Kenneth D" last="Steadman">Kenneth D. Steadman</name>
<name sortKey="Tuse, Daniel" sort="Tuse, Daniel" uniqKey="Tuse D" first="Daniel" last="Tusé">Daniel Tusé</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000956 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000956 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:30087892
   |texte=   Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:30087892" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021