Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs.

Identifieur interne : 000476 ( PubMed/Checkpoint ); précédent : 000475; suivant : 000477

Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs.

Auteurs : Hanako Sekimukai [Japon] ; Naoko Iwata-Yoshikawa [Japon] ; Shuetsu Fukushi [Japon] ; Hideki Tani [Japon] ; Michiyo Kataoka [Japon] ; Tadaki Suzuki [Japon] ; Hideki Hasegawa [Japon] ; Kenichi Niikura [Japon] ; Katsuhiko Arai [Japon] ; Noriyo Nagata [Japon]

Source :

RBID : pubmed:31692019

Descripteurs français

English descriptors

Abstract

The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.

DOI: 10.1111/1348-0421.12754
PubMed: 31692019


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31692019

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs.</title>
<author>
<name sortKey="Sekimukai, Hanako" sort="Sekimukai, Hanako" uniqKey="Sekimukai H" first="Hanako" last="Sekimukai">Hanako Sekimukai</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Iwata Yoshikawa, Naoko" sort="Iwata Yoshikawa, Naoko" uniqKey="Iwata Yoshikawa N" first="Naoko" last="Iwata-Yoshikawa">Naoko Iwata-Yoshikawa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tani, Hideki" sort="Tani, Hideki" uniqKey="Tani H" first="Hideki" last="Tani">Hideki Tani</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kataoka, Michiyo" sort="Kataoka, Michiyo" uniqKey="Kataoka M" first="Michiyo" last="Kataoka">Michiyo Kataoka</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Tadaki" sort="Suzuki, Tadaki" uniqKey="Suzuki T" first="Tadaki" last="Suzuki">Tadaki Suzuki</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hasegawa, Hideki" sort="Hasegawa, Hideki" uniqKey="Hasegawa H" first="Hideki" last="Hasegawa">Hideki Hasegawa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Niikura, Kenichi" sort="Niikura, Kenichi" uniqKey="Niikura K" first="Kenichi" last="Niikura">Kenichi Niikura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido</wicri:regionArea>
<wicri:noRegion>Hokkaido</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arai, Katsuhiko" sort="Arai, Katsuhiko" uniqKey="Arai K" first="Katsuhiko" last="Arai">Katsuhiko Arai</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nagata, Noriyo" sort="Nagata, Noriyo" uniqKey="Nagata N" first="Noriyo" last="Nagata">Noriyo Nagata</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31692019</idno>
<idno type="pmid">31692019</idno>
<idno type="doi">10.1111/1348-0421.12754</idno>
<idno type="wicri:Area/PubMed/Corpus">000861</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000861</idno>
<idno type="wicri:Area/PubMed/Curation">000861</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000861</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000476</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000476</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs.</title>
<author>
<name sortKey="Sekimukai, Hanako" sort="Sekimukai, Hanako" uniqKey="Sekimukai H" first="Hanako" last="Sekimukai">Hanako Sekimukai</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Iwata Yoshikawa, Naoko" sort="Iwata Yoshikawa, Naoko" uniqKey="Iwata Yoshikawa N" first="Naoko" last="Iwata-Yoshikawa">Naoko Iwata-Yoshikawa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tani, Hideki" sort="Tani, Hideki" uniqKey="Tani H" first="Hideki" last="Tani">Hideki Tani</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kataoka, Michiyo" sort="Kataoka, Michiyo" uniqKey="Kataoka M" first="Michiyo" last="Kataoka">Michiyo Kataoka</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Tadaki" sort="Suzuki, Tadaki" uniqKey="Suzuki T" first="Tadaki" last="Suzuki">Tadaki Suzuki</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hasegawa, Hideki" sort="Hasegawa, Hideki" uniqKey="Hasegawa H" first="Hideki" last="Hasegawa">Hideki Hasegawa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Niikura, Kenichi" sort="Niikura, Kenichi" uniqKey="Niikura K" first="Kenichi" last="Niikura">Kenichi Niikura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido</wicri:regionArea>
<wicri:noRegion>Hokkaido</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arai, Katsuhiko" sort="Arai, Katsuhiko" uniqKey="Arai K" first="Katsuhiko" last="Arai">Katsuhiko Arai</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nagata, Noriyo" sort="Nagata, Noriyo" uniqKey="Nagata N" first="Noriyo" last="Nagata">Noriyo Nagata</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiology and immunology</title>
<idno type="eISSN">1348-0421</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adjuvants, Immunologic (pharmacology)</term>
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Antibodies, Viral (immunology)</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus (immunology)</term>
<term>Coronavirus Infections (immunology)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cytokines (metabolism)</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Gold (chemistry)</term>
<term>Immunization</term>
<term>Immunoglobulin G (immunology)</term>
<term>Lung (immunology)</term>
<term>Lung (pathology)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Recombinant Proteins (immunology)</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (prevention & control)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (immunology)</term>
<term>Toll-Like Receptors</term>
<term>Vaccination</term>
<term>Vaccines, Synthetic</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (immunology)</term>
<term>Viral Vaccines (immunology)</term>
<term>Viral Vaccines (pharmacology)</term>
<term>Viral Vaccines (therapeutic use)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adjuvants immunologiques (pharmacologie)</term>
<term>Analyse de variance</term>
<term>Animaux</term>
<term>Anticorps antiviraux (immunologie)</term>
<term>Cellules Vero</term>
<term>Coronavirus (immunologie)</term>
<term>Cytokines (métabolisme)</term>
<term>Femelle</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus (immunologie)</term>
<term>Immunisation</term>
<term>Immunoglobuline G (immunologie)</term>
<term>Infections à coronavirus ()</term>
<term>Infections à coronavirus (immunologie)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Modèles animaux de maladie humaine</term>
<term>Nanoparticules métalliques ()</term>
<term>Or ()</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (immunologie)</term>
<term>Protéines de l'enveloppe virale (génétique)</term>
<term>Protéines de l'enveloppe virale (immunologie)</term>
<term>Protéines recombinantes (immunologie)</term>
<term>Récepteurs de type Toll</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Syndrome respiratoire aigu sévère ()</term>
<term>Syndrome respiratoire aigu sévère (immunologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Vaccination</term>
<term>Vaccins antiviraux (immunologie)</term>
<term>Vaccins antiviraux (pharmacologie)</term>
<term>Vaccins antiviraux (usage thérapeutique)</term>
<term>Vaccins synthétiques</term>
<term>Virus du SRAS (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Gold</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Immunoglobulin G</term>
<term>Recombinant Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adjuvants, Immunologic</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps antiviraux</term>
<term>Coronavirus</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Immunoglobuline G</term>
<term>Infections à coronavirus</term>
<term>Poumon</term>
<term>Protéines de l'enveloppe virale</term>
<term>Protéines recombinantes</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Vaccins antiviraux</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Coronavirus</term>
<term>Coronavirus Infections</term>
<term>Lung</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Adjuvants immunologiques</term>
<term>Vaccins antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Vaccins antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Immunization</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Toll-Like Receptors</term>
<term>Vaccination</term>
<term>Vaccines, Synthetic</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de variance</term>
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Femelle</term>
<term>Immunisation</term>
<term>Infections à coronavirus</term>
<term>Modèles animaux de maladie humaine</term>
<term>Nanoparticules métalliques</term>
<term>Or</term>
<term>Récepteurs de type Toll</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Vaccination</term>
<term>Vaccins synthétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31692019</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1348-0421</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>64</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Microbiology and immunology</Title>
<ISOAbbreviation>Microbiol. Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs.</ArticleTitle>
<Pagination>
<MedlinePgn>33-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1348-0421.12754</ELocationID>
<Abstract>
<AbstractText>The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.</AbstractText>
<CopyrightInformation>© 2019 The Societies and John Wiley & Sons Australia, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sekimukai</LastName>
<ForeName>Hanako</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iwata-Yoshikawa</LastName>
<ForeName>Naoko</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fukushi</LastName>
<ForeName>Shuetsu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tani</LastName>
<ForeName>Hideki</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kataoka</LastName>
<ForeName>Michiyo</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>Tadaki</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hasegawa</LastName>
<ForeName>Hideki</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6558-2297</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niikura</LastName>
<ForeName>Kenichi</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arai</LastName>
<ForeName>Katsuhiko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nagata</LastName>
<ForeName>Noriyo</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9147-1438</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>16K09951</GrantID>
<Agency>Japan Science and Technology Agency</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>19K08945</GrantID>
<Agency>Japan Science and Technology Agency</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>19fk0108072</GrantID>
<Agency>Japan Agency for Medical Research and Development</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>JP17fk0108313</GrantID>
<Agency>Japan Agency for Medical Research and Development</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>JP19fk0108058</GrantID>
<Agency>Japan Agency for Medical Research and Development</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Australia</Country>
<MedlineTA>Microbiol Immunol</MedlineTA>
<NlmUniqueID>7703966</NlmUniqueID>
<ISSNLinking>0385-5600</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000276">Adjuvants, Immunologic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007074">Immunoglobulin G</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051193">Toll-Like Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014614">Vaccines, Synthetic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-57-5</RegistryNumber>
<NameOfSubstance UI="D006046">Gold</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000276" MajorTopicYN="N">Adjuvants, Immunologic</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006046" MajorTopicYN="N">Gold</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007114" MajorTopicYN="N">Immunization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007074" MajorTopicYN="N">Immunoglobulin G</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051193" MajorTopicYN="N">Toll-Like Receptors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014611" MajorTopicYN="N">Vaccination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014614" MajorTopicYN="N">Vaccines, Synthetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">adjuvant</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">eosinophils</Keyword>
<Keyword MajorTopicYN="N">gold nanoparticles</Keyword>
<Keyword MajorTopicYN="N">immunopathology</Keyword>
<Keyword MajorTopicYN="N">mouse model</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31692019</ArticleId>
<ArticleId IdType="doi">10.1111/1348-0421.12754</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Droste C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967-76.</Citation>
</Reference>
<Reference>
<Citation>Guan Y, Peiris JS, Zheng B, et al. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet. 2004;363:99-104.</Citation>
</Reference>
<Reference>
<Citation>Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953-66.</Citation>
</Reference>
<Reference>
<Citation>Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348:1986-94.</Citation>
</Reference>
<Reference>
<Citation>Peiris JS, Lai ST, Poon LL, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319-25.</Citation>
</Reference>
<Reference>
<Citation>Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003;362:1353-8.</Citation>
</Reference>
<Reference>
<Citation>Hijawi B, Abdallat M, Sayaydeh A, et al. Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. East Mediterr Health J. 2013;19(Suppl 1):S12-8.</Citation>
</Reference>
<Reference>
<Citation>Korea Centers for Disease Control Prevention Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015. Osong Public Health Res Perspect. 2015;6:269-78.</Citation>
</Reference>
<Reference>
<Citation>Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814-20.</Citation>
</Reference>
<Reference>
<Citation>Jeffers SA, Tusell SM, Gillim-Ross L, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;101:15748-53.</Citation>
</Reference>
<Reference>
<Citation>Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864-8.</Citation>
</Reference>
<Reference>
<Citation>Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-4.</Citation>
</Reference>
<Reference>
<Citation>Gao W, Tamin A, Soloff A, et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet. 2003;362:1895-6.</Citation>
</Reference>
<Reference>
<Citation>Hofmann H, Hattermann K, Marzi A, et al. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J Virol. 2004;78:6134-42.</Citation>
</Reference>
<Reference>
<Citation>Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101:4240-5.</Citation>
</Reference>
<Reference>
<Citation>Sui J, Li W, Murakami A, et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A. 2004;101:2536-41.</Citation>
</Reference>
<Reference>
<Citation>Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004;279:3197-201.</Citation>
</Reference>
<Reference>
<Citation>Zeng F, Chow KY, Hon CC, et al. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem Biophys Res Commun. 2004;315:1134-9.</Citation>
</Reference>
<Reference>
<Citation>Bisht H, Roberts A, Vogel L, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A. 2004;101:6641-6.</Citation>
</Reference>
<Reference>
<Citation>Bukreyev A, Lamirande EW, Buchholz UJ, et al. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004;363:2122-7.</Citation>
</Reference>
<Reference>
<Citation>Chen Z, Zhang L, Qin C, et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol. 2005;79:2678-88.</Citation>
</Reference>
<Reference>
<Citation>He Y, Li J, Heck S, Lustigman S, Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol. 2006;80:5757-67.</Citation>
</Reference>
<Reference>
<Citation>He Y, Zhou Y, Wu H, et al. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol. 2004;173:4050-7.</Citation>
</Reference>
<Reference>
<Citation>Huang J, Cao Y, Du J, Bu X, Ma R, Wu C. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine. 2007;25:6981-91.</Citation>
</Reference>
<Reference>
<Citation>Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428:561-4.</Citation>
</Reference>
<Reference>
<Citation>Zhou Z, Post P, Chubet R, et al. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine. 2006;24:3624-31.</Citation>
</Reference>
<Reference>
<Citation>Bolles M, Deming D, Long K, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011;85:12201-15.</Citation>
</Reference>
<Reference>
<Citation>Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89:2995-3007.</Citation>
</Reference>
<Reference>
<Citation>Tseng CT, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012;7:e35421.</Citation>
</Reference>
<Reference>
<Citation>Kim HW, Canchola JG, Brandt CD, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89:422-34.</Citation>
</Reference>
<Reference>
<Citation>Olson MR, Varga SM. Pulmonary immunity and immunopathology: lessons from respiratory syncytial virus. Expert Rev Vaccines. 2008;7:1239-55.</Citation>
</Reference>
<Reference>
<Citation>Openshaw PJ, Culley FJ, Olszewska W. Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine. 2001;20(Suppl 1):S27-31.</Citation>
</Reference>
<Reference>
<Citation>Delgado MF, Coviello S, Monsalvo AC, et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med. 2009;15:34-41.</Citation>
</Reference>
<Reference>
<Citation>Iwata-Yoshikawa N, Uda A, Suzuki T, et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol. 2014;88:8597-614.</Citation>
</Reference>
<Reference>
<Citation>Nagata N, Iwata N, Hasegawa H, et al. Mouse-passaged severe acute respiratory syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse alveolar damage in adult but not young mice. Am J Pathol. 2008;172:1625-37.</Citation>
</Reference>
<Reference>
<Citation>Ahmad S, Zamry AA, Tan HT, Wong KK, Lim J, Mohamud R. Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties. Mol Immunol. 2017;91:123-33.</Citation>
</Reference>
<Reference>
<Citation>Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9:2224.</Citation>
</Reference>
<Reference>
<Citation>Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine. 2014;32:327-37.</Citation>
</Reference>
<Reference>
<Citation>Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7:3926-38.</Citation>
</Reference>
<Reference>
<Citation>Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci. 2017;8:1719-35.</Citation>
</Reference>
<Reference>
<Citation>Fukushi S, Fukuma A, Kurosu T, et al. Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA. J Virol Methods. 2018;251:22-29.</Citation>
</Reference>
<Reference>
<Citation>Matsuura Y, Possee RD, Overton HA, Bishop DH. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol. 1987;68(Pt 5):1233-50.</Citation>
</Reference>
<Reference>
<Citation>Singh H, Shimojima M, Fukushi S, et al. Serologic assays for the detection and strain identification of Pteropine orthoreovirus. Emerg Microbes Infect. 2016;5:1-5.</Citation>
</Reference>
<Reference>
<Citation>Fukuma A, Tani H, Taniguchi S, Shimojima M, Saijo M, Fukushi S. Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein. Arch Virol. 2015;160:2293-300.</Citation>
</Reference>
<Reference>
<Citation>Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci U S A. 2007;104:2667-72.</Citation>
</Reference>
<Reference>
<Citation>Ichinohe T, Watanabe I, Ito S, et al. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J Virol. 2005;79:2910-9.</Citation>
</Reference>
<Reference>
<Citation>Li F, Berardi M, Li W, Farzan M, Dormitzer PR, Harrison SC. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol. 2006;80:6794-800.</Citation>
</Reference>
<Reference>
<Citation>Fields BN, Knipe DM, Howley PM. Fields Virology. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013.</Citation>
</Reference>
<Reference>
<Citation>Agnihothram S, Yount BL Jr, Donaldson EF, et al. A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant. mBio. 2014;5:e00047-14.</Citation>
</Reference>
<Reference>
<Citation>Du L, Zhao G, He Y, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine. 2007;25:2832-8.</Citation>
</Reference>
<Reference>
<Citation>Faber M, Lamirande EW, Roberts A, et al. A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. J Gen Virol. 2005;86:1435-40.</Citation>
</Reference>
<Reference>
<Citation>He Y, Lu H, Siddiqui P, Zhou Y, Jiang S. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol. 2005;174:4908-15.</Citation>
</Reference>
<Reference>
<Citation>See RH, Zakhartchouk AN, Petric M, et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol. 2006;87:641-50.</Citation>
</Reference>
<Reference>
<Citation>Woo PC, Lau SK, Tsoi HW, et al. SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine. 2005;23:4959-68.</Citation>
</Reference>
<Reference>
<Citation>Zhao J, Li K, Wohlford-Lenane C, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A. 2014;111:4970-5.</Citation>
</Reference>
<Reference>
<Citation>Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11:59.</Citation>
</Reference>
<Reference>
<Citation>Agrawal AS, Tao X, Algaissi A, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016;12:2351-6.</Citation>
</Reference>
<Reference>
<Citation>Mukhopadhyay A, Basu S, Singha S, Patra HK. Inner-view of nanomaterial incited protein conformational changes: insights into designable interaction. Research. 2018;, 2018:1-15.</Citation>
</Reference>
<Reference>
<Citation>Nguyen VH, Lee BJ. Protein corona: a new approach for nanomedicine design. Int J Nanomedicine. 2017;12:3137-51.</Citation>
</Reference>
<Reference>
<Citation>Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779-86.</Citation>
</Reference>
<Reference>
<Citation>Lacerda SH, Park JJ, Meuse C, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 2010;4:365-79.</Citation>
</Reference>
<Reference>
<Citation>Russell BA, Jachimska B, Komorek P, Mulheran PA, Chen Y. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics. Phys Chem Chem Phys. 2017;19:7228-35.</Citation>
</Reference>
<Reference>
<Citation>Levy DE, Marie IJ, Durbin JE. Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol. 2011;1:476-86.</Citation>
</Reference>
<Reference>
<Citation>Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity. 2006;25:373-81.</Citation>
</Reference>
<Reference>
<Citation>Nagata N, Iwata N, Hasegawa H, et al. Participation of both host and virus factors in induction of severe acute respiratory syndrome (SARS) in F344 rats infected with SARS coronavirus. J Virol. 2007;81:1848-57.</Citation>
</Reference>
<Reference>
<Citation>Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol. 2010;84:1289-301.</Citation>
</Reference>
<Reference>
<Citation>Page C, Goicochea L, Matthews K, et al. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol. 2012;86:13334-49.</Citation>
</Reference>
<Reference>
<Citation>Tazaki T, Tabata K, Ainai A, et al. Shape-dependent adjuvanticity of nanoparticle conjugated RNA adjuvants for intranasal inactivated influenza vaccines. RSC Adv. 2018;8:16527-36.</Citation>
</Reference>
<Reference>
<Citation>Mottram PL, Leong D, Crimeen-Irwin B, et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharmaceutics. 2007;4:73-84.</Citation>
</Reference>
<Reference>
<Citation>Leenaars M, Hendriksen CF. Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. ILAR J. 2005;46:269-79.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Sekimukai, Hanako" sort="Sekimukai, Hanako" uniqKey="Sekimukai H" first="Hanako" last="Sekimukai">Hanako Sekimukai</name>
</region>
<name sortKey="Arai, Katsuhiko" sort="Arai, Katsuhiko" uniqKey="Arai K" first="Katsuhiko" last="Arai">Katsuhiko Arai</name>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
<name sortKey="Hasegawa, Hideki" sort="Hasegawa, Hideki" uniqKey="Hasegawa H" first="Hideki" last="Hasegawa">Hideki Hasegawa</name>
<name sortKey="Iwata Yoshikawa, Naoko" sort="Iwata Yoshikawa, Naoko" uniqKey="Iwata Yoshikawa N" first="Naoko" last="Iwata-Yoshikawa">Naoko Iwata-Yoshikawa</name>
<name sortKey="Kataoka, Michiyo" sort="Kataoka, Michiyo" uniqKey="Kataoka M" first="Michiyo" last="Kataoka">Michiyo Kataoka</name>
<name sortKey="Nagata, Noriyo" sort="Nagata, Noriyo" uniqKey="Nagata N" first="Noriyo" last="Nagata">Noriyo Nagata</name>
<name sortKey="Niikura, Kenichi" sort="Niikura, Kenichi" uniqKey="Niikura K" first="Kenichi" last="Niikura">Kenichi Niikura</name>
<name sortKey="Suzuki, Tadaki" sort="Suzuki, Tadaki" uniqKey="Suzuki T" first="Tadaki" last="Suzuki">Tadaki Suzuki</name>
<name sortKey="Tani, Hideki" sort="Tani, Hideki" uniqKey="Tani H" first="Hideki" last="Tani">Hideki Tani</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000476 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000476 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:31692019
   |texte=   Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:31692019" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021