Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of hydrophobic and electrostatic residues on SARS‐coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

Identifieur interne : 001445 ( Pmc/Curation ); précédent : 001444; suivant : 001446

Influence of hydrophobic and electrostatic residues on SARS‐coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

Auteurs : Halil Aydin ; Dina Al-Khooly ; Jeffrey E. Lee

Source :

RBID : PMC:4005712

Abstract

Abstract

Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS‐coronavirus (SARS‐CoV). SARS‐CoV entry is facilitated by the spike protein (S), which consists of an N‐terminal domain (S1) responsible for cellular attachment and a C‐terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS‐CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site‐directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH‐independent retroviral fusion proteins, SARS‐CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS‐CoV S2 analysis showed that specific hydrophobic positions at the C‐terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C‐terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C‐terminal hydrophobic residues led us to identify a 42‐residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.


Url:
DOI: 10.1002/pro.2442
PubMed: 24519901
PubMed Central: 4005712

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4005712

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of hydrophobic and electrostatic residues on SARS‐coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design</title>
<author>
<name sortKey="Aydin, Halil" sort="Aydin, Halil" uniqKey="Aydin H" first="Halil" last="Aydin">Halil Aydin</name>
<affiliation>
<nlm:aff id="pro2442-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Hooly, Dina" sort="Al Hooly, Dina" uniqKey="Al Hooly D" first="Dina" last="Al-Khooly">Dina Al-Khooly</name>
<affiliation>
<nlm:aff id="pro2442-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jeffrey E" sort="Lee, Jeffrey E" uniqKey="Lee J" first="Jeffrey E." last="Lee">Jeffrey E. Lee</name>
<affiliation>
<nlm:aff id="pro2442-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24519901</idno>
<idno type="pmc">4005712</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005712</idno>
<idno type="RBID">PMC:4005712</idno>
<idno type="doi">10.1002/pro.2442</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001445</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001445</idno>
<idno type="wicri:Area/Pmc/Curation">001445</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">001445</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Influence of hydrophobic and electrostatic residues on SARS‐coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design</title>
<author>
<name sortKey="Aydin, Halil" sort="Aydin, Halil" uniqKey="Aydin H" first="Halil" last="Aydin">Halil Aydin</name>
<affiliation>
<nlm:aff id="pro2442-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Hooly, Dina" sort="Al Hooly, Dina" uniqKey="Al Hooly D" first="Dina" last="Al-Khooly">Dina Al-Khooly</name>
<affiliation>
<nlm:aff id="pro2442-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jeffrey E" sort="Lee, Jeffrey E" uniqKey="Lee J" first="Jeffrey E." last="Lee">Jeffrey E. Lee</name>
<affiliation>
<nlm:aff id="pro2442-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Protein Science : A Publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<idno type="eISSN">1469-896X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS‐coronavirus (SARS‐CoV). SARS‐CoV entry is facilitated by the spike protein (S), which consists of an N‐terminal domain (S1) responsible for cellular attachment and a C‐terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS‐CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site‐directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH‐independent retroviral fusion proteins, SARS‐CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS‐CoV S2 analysis showed that specific hydrophobic positions at the C‐terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C‐terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C‐terminal hydrophobic residues led us to identify a 42‐residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Protein Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Protein Sci</journal-id>
<journal-id journal-id-type="doi">10.1002/(ISSN)1469-896X</journal-id>
<journal-id journal-id-type="publisher-id">PRO</journal-id>
<journal-title-group>
<journal-title>Protein Science : A Publication of the Protein Society</journal-title>
</journal-title-group>
<issn pub-type="ppub">0961-8368</issn>
<issn pub-type="epub">1469-896X</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24519901</article-id>
<article-id pub-id-type="pmc">4005712</article-id>
<article-id pub-id-type="doi">10.1002/pro.2442</article-id>
<article-id pub-id-type="publisher-id">PRO2442</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Influence of hydrophobic and electrostatic residues on SARS‐coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design</article-title>
<alt-title alt-title-type="right-running-head">Biophysical Characterization of the SARS S2 Helical Core</alt-title>
<alt-title alt-title-type="left-running-head">Aydin et al.</alt-title>
</title-group>
<contrib-group>
<contrib id="pro2442-cr-0001" contrib-type="author">
<name>
<surname>Aydin</surname>
<given-names>Halil</given-names>
</name>
<xref ref-type="aff" rid="pro2442-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="pro2442-cr-0002" contrib-type="author">
<name>
<surname>Al‐Khooly</surname>
<given-names>Dina</given-names>
</name>
<xref ref-type="aff" rid="pro2442-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="pro2442-cr-0003" contrib-type="author" corresp="yes">
<name>
<surname>Lee</surname>
<given-names>Jeffrey E.</given-names>
</name>
<xref ref-type="aff" rid="pro2442-aff-0001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="pro2442-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Department of Laboratory Medicine and Pathobiology</named-content>
<institution>Faculty of Medicine, University of Toronto</institution>
<city>Toronto</city>
<named-content content-type="country-part">Ontario</named-content>
<postal-code>M5S 1A8</postal-code>
<country country="CA">Canada</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
<italic>Correspondence to</italic>
: J. E. Lee, 1 King's College Circle, Room 6316, Medical Sciences Building, Toronto, ON M5S 1A8, Canada. E‐mail:
<email>jeff.lee@utoronto.ca</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>5</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>19</day>
<month>3</month>
<year>2014</year>
</pub-date>
<volume>23</volume>
<issue>5</issue>
<issue-id pub-id-type="doi">10.1002/pro.v23.5</issue-id>
<fpage>603</fpage>
<lpage>617</lpage>
<history>
<date date-type="received">
<day>07</day>
<month>12</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>09</day>
<month>2</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>2</month>
<year>2014</year>
</date>
</history>
<permissions>
<pmc-comment> © 2014 The Protein Society </pmc-comment>
<copyright-statement content-type="article-copyright">© 2014 The Protein Society</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:PRO-23-603.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS‐coronavirus (SARS‐CoV). SARS‐CoV entry is facilitated by the spike protein (S), which consists of an N‐terminal domain (S1) responsible for cellular attachment and a C‐terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS‐CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site‐directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH‐independent retroviral fusion proteins, SARS‐CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS‐CoV S2 analysis showed that specific hydrophobic positions at the C‐terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C‐terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C‐terminal hydrophobic residues led us to identify a 42‐residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="pro2442-kwd-0001">viral entry</kwd>
<kwd id="pro2442-kwd-0002">SARS‐CoV</kwd>
<kwd id="pro2442-kwd-0003">viral fusion</kwd>
<kwd id="pro2442-kwd-0004">coronavirus</kwd>
<kwd id="pro2442-kwd-0005">MERS‐CoV</kwd>
<kwd id="pro2442-kwd-0006">glycoprotein</kwd>
<kwd id="pro2442-kwd-0007">S2</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>Canadian Institutes of Health Research (CIHR) Open Operating Grant</funding-source>
<award-id>MOP‐115066</award-id>
</award-group>
<award-group id="funding-0002">
<funding-source>Canada Research Chair in Structural Virology and a CIHR New Investigator Award</funding-source>
<award-id>MSH‐113554</award-id>
</award-group>
<award-group id="funding-0003">
<funding-source>HA was supported by a University of Toronto Graduate Fellowship</funding-source>
</award-group>
</funding-group>
<counts>
<page-count count="15"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>May 2014</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001445 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001445 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4005712
   |texte=   Influence of hydrophobic and electrostatic residues on SARS‐coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:24519901" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021