Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus

Identifieur interne : 001872 ( Pmc/Corpus ); précédent : 001871; suivant : 001873

Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus

Auteurs : Júlia Vergara-Alert ; Enric Vidal ; Albert Bensaid ; Joaquim Segalés

Source :

RBID : PMC:5454147

Abstract

Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.


Url:
DOI: 10.1016/j.onehlt.2017.03.001
PubMed: 28616501
PubMed Central: 5454147

Links to Exploration step

PMC:5454147

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus</title>
<author>
<name sortKey="Vergara Alert, Julia" sort="Vergara Alert, Julia" uniqKey="Vergara Alert J" first="Júlia" last="Vergara-Alert">Júlia Vergara-Alert</name>
<affiliation>
<nlm:aff id="af0005">IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vidal, Enric" sort="Vidal, Enric" uniqKey="Vidal E" first="Enric" last="Vidal">Enric Vidal</name>
<affiliation>
<nlm:aff id="af0005">IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bensaid, Albert" sort="Bensaid, Albert" uniqKey="Bensaid A" first="Albert" last="Bensaid">Albert Bensaid</name>
<affiliation>
<nlm:aff id="af0005">IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Segales, Joaquim" sort="Segales, Joaquim" uniqKey="Segales J" first="Joaquim" last="Segalés">Joaquim Segalés</name>
<affiliation>
<nlm:aff id="af0010">UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af0015">Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28616501</idno>
<idno type="pmc">5454147</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454147</idno>
<idno type="RBID">PMC:5454147</idno>
<idno type="doi">10.1016/j.onehlt.2017.03.001</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">001872</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001872</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus</title>
<author>
<name sortKey="Vergara Alert, Julia" sort="Vergara Alert, Julia" uniqKey="Vergara Alert J" first="Júlia" last="Vergara-Alert">Júlia Vergara-Alert</name>
<affiliation>
<nlm:aff id="af0005">IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vidal, Enric" sort="Vidal, Enric" uniqKey="Vidal E" first="Enric" last="Vidal">Enric Vidal</name>
<affiliation>
<nlm:aff id="af0005">IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bensaid, Albert" sort="Bensaid, Albert" uniqKey="Bensaid A" first="Albert" last="Bensaid">Albert Bensaid</name>
<affiliation>
<nlm:aff id="af0005">IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Segales, Joaquim" sort="Segales, Joaquim" uniqKey="Segales J" first="Joaquim" last="Segalés">Joaquim Segalés</name>
<affiliation>
<nlm:aff id="af0010">UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af0015">Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Barcelona, Spain</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">One Health</title>
<idno type="eISSN">2352-7714</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubin, C" uniqKey="Rubin C">C. Rubin</name>
</author>
<author>
<name sortKey="Myers, T" uniqKey="Myers T">T. Myers</name>
</author>
<author>
<name sortKey="Stokes, W" uniqKey="Stokes W">W. Stokes</name>
</author>
<author>
<name sortKey="Dunham, B" uniqKey="Dunham B">B. Dunham</name>
</author>
<author>
<name sortKey="Harris, S" uniqKey="Harris S">S. Harris</name>
</author>
<author>
<name sortKey="Lautner, B" uniqKey="Lautner B">B. Lautner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, K E" uniqKey="Jones K">K.E. Jones</name>
</author>
<author>
<name sortKey="Patel, N G" uniqKey="Patel N">N.G. Patel</name>
</author>
<author>
<name sortKey="Levy, M A" uniqKey="Levy M">M.A. Levy</name>
</author>
<author>
<name sortKey="Storeygard, A" uniqKey="Storeygard A">A. Storeygard</name>
</author>
<author>
<name sortKey="Balk, D" uniqKey="Balk D">D. Balk</name>
</author>
<author>
<name sortKey="Gittleman, J L" uniqKey="Gittleman J">J.L. Gittleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morse, S S" uniqKey="Morse S">S.S. Morse</name>
</author>
<author>
<name sortKey="Mazet, J A K" uniqKey="Mazet J">J.A.K. Mazet</name>
</author>
<author>
<name sortKey="Woolhouse, M" uniqKey="Woolhouse M">M. Woolhouse</name>
</author>
<author>
<name sortKey="Parrish, C R" uniqKey="Parrish C">C.R. Parrish</name>
</author>
<author>
<name sortKey="Carroll, D" uniqKey="Carroll D">D. Carroll</name>
</author>
<author>
<name sortKey="Karesh, W B" uniqKey="Karesh W">W.B. Karesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Kel, M J" uniqKey="M Kel M">M.J. Mäkelä</name>
</author>
<author>
<name sortKey="Puhakka, T" uniqKey="Puhakka T">T. Puhakka</name>
</author>
<author>
<name sortKey="Ruuskanen, O" uniqKey="Ruuskanen O">O. Ruuskanen</name>
</author>
<author>
<name sortKey="Leinonen, M" uniqKey="Leinonen M">M. Leinonen</name>
</author>
<author>
<name sortKey="Saikku, P" uniqKey="Saikku P">P. Saikku</name>
</author>
<author>
<name sortKey="Kimpim Ki, M" uniqKey="Kimpim Ki M">M. Kimpimäki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="World Health Organization Who" uniqKey="World Health Organization Who">World Health Organization, WHO</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bermingham, A" uniqKey="Bermingham A">A. Bermingham</name>
</author>
<author>
<name sortKey="Chand, M A" uniqKey="Chand M">M.A. Chand</name>
</author>
<author>
<name sortKey="Brown, C S" uniqKey="Brown C">C.S. Brown</name>
</author>
<author>
<name sortKey="Aarons, E" uniqKey="Aarons E">E. Aarons</name>
</author>
<author>
<name sortKey="Tong, C" uniqKey="Tong C">C. Tong</name>
</author>
<author>
<name sortKey="Langrish, C" uniqKey="Langrish C">C. Langrish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="World Health Organization Who" uniqKey="World Health Organization Who">World Health Organization, WHO</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="World Health Organization Who" uniqKey="World Health Organization Who">World Health Organization, WHO</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paweska, J T" uniqKey="Paweska J">J.T. Paweska</name>
</author>
<author>
<name sortKey="Sewlall, N H" uniqKey="Sewlall N">N.H. Sewlall</name>
</author>
<author>
<name sortKey="Ksiazek, T G" uniqKey="Ksiazek T">T.G. Ksiazek</name>
</author>
<author>
<name sortKey="Blumberg, L H" uniqKey="Blumberg L">L.H. Blumberg</name>
</author>
<author>
<name sortKey="Hale, M J" uniqKey="Hale M">M.J. Hale</name>
</author>
<author>
<name sortKey="Lipkin, W I" uniqKey="Lipkin W">W.I. Lipkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, X J" uniqKey="Yu X">X.J. Yu</name>
</author>
<author>
<name sortKey="Liang, M F" uniqKey="Liang M">M.F. Liang</name>
</author>
<author>
<name sortKey="Zhang, S Y" uniqKey="Zhang S">S.Y. Zhang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Li, J D" uniqKey="Li J">J.D. Li</name>
</author>
<author>
<name sortKey="Sun, Y L" uniqKey="Sun Y">Y.L. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Safronetz, D" uniqKey="Safronetz D">D. Safronetz</name>
</author>
<author>
<name sortKey="Geisbert, T W" uniqKey="Geisbert T">T.W. Geisbert</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H. Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Food And Drug Administration Fda" uniqKey="Food And Drug Administration Fda">Food and Drug Administration, FDA</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plumb, G" uniqKey="Plumb G">G. Plumb</name>
</author>
<author>
<name sortKey="Babiuk, L" uniqKey="Babiuk L">L. Babiuk</name>
</author>
<author>
<name sortKey="Mazet, J" uniqKey="Mazet J">J. Mazet</name>
</author>
<author>
<name sortKey="Olsen, S" uniqKey="Olsen S">S. Olsen</name>
</author>
<author>
<name sortKey="Rupprecht, C" uniqKey="Rupprecht C">C. Rupprecht</name>
</author>
<author>
<name sortKey="Pastoret, P P" uniqKey="Pastoret P">P.P. Pastoret</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, L G" uniqKey="Adams L">L.G. Adams</name>
</author>
<author>
<name sortKey="Khare, S" uniqKey="Khare S">S. Khare</name>
</author>
<author>
<name sortKey="Lawhon, S D" uniqKey="Lawhon S">S.D. Lawhon</name>
</author>
<author>
<name sortKey="Rossetti, C A" uniqKey="Rossetti C">C.A. Rossetti</name>
</author>
<author>
<name sortKey="Lewin, H A" uniqKey="Lewin H">H.A. Lewin</name>
</author>
<author>
<name sortKey="Lipton, M S" uniqKey="Lipton M">M.S. Lipton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alharbi, N K" uniqKey="Alharbi N">N.K. Alharbi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowenthal, J" uniqKey="Lowenthal J">J. Lowenthal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baseler, L J" uniqKey="Baseler L">L.J. Baseler</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D. Falzarano</name>
</author>
<author>
<name sortKey="Scott, D P" uniqKey="Scott D">D.P. Scott</name>
</author>
<author>
<name sortKey="Rosenke, R" uniqKey="Rosenke R">R. Rosenke</name>
</author>
<author>
<name sortKey="Thomas, T" uniqKey="Thomas T">T. Thomas</name>
</author>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V.J. Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N. van Doremalen</name>
</author>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V.J. Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutton, T C" uniqKey="Sutton T">T.C. Sutton</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K. Subbarao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baseler, L" uniqKey="Baseler L">L. Baseler</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. de Wit</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H. Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. de Wit</name>
</author>
<author>
<name sortKey="Rasmussen, A L" uniqKey="Rasmussen A">A.L. Rasmussen</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D. Falzarano</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T. Bushmaker</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F. Feldmann</name>
</author>
<author>
<name sortKey="Brining, D L" uniqKey="Brining D">D.L. Brining</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V.J. Munster</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. de Wit</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H. Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y. Yao</name>
</author>
<author>
<name sortKey="Bao, L" uniqKey="Bao L">L. Bao</name>
</author>
<author>
<name sortKey="Deng, W" uniqKey="Deng W">W. Deng</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L. Xu</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
<author>
<name sortKey="Lv, Q" uniqKey="Lv Q">Q. Lv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D. Falzarano</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. de Wit</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F. Feldmann</name>
</author>
<author>
<name sortKey="Rasmussen, A L" uniqKey="Rasmussen A">A.L. Rasmussen</name>
</author>
<author>
<name sortKey="Okumura, A" uniqKey="Okumura A">A. Okumura</name>
</author>
<author>
<name sortKey="Peng, X" uniqKey="Peng X">X. Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H. Mou</name>
</author>
<author>
<name sortKey="Smits, S L" uniqKey="Smits S">S.L. Smits</name>
</author>
<author>
<name sortKey="Dekkers, D H" uniqKey="Dekkers D">D.H. Dekkers</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M.A. Müller</name>
</author>
<author>
<name sortKey="Dijkman, R" uniqKey="Dijkman R">R. Dijkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L. Jiang</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Tong, P" uniqKey="Tong P">P. Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. de Wit</name>
</author>
<author>
<name sortKey="Prescott, J" uniqKey="Prescott J">J. Prescott</name>
</author>
<author>
<name sortKey="Baseler, L" uniqKey="Baseler L">L. Baseler</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T. Bushmaker</name>
</author>
<author>
<name sortKey="Thomas, T" uniqKey="Thomas T">T. Thomas</name>
</author>
<author>
<name sortKey="Lackemeyer, M G" uniqKey="Lackemeyer M">M.G. Lackemeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, C M" uniqKey="Coleman C">C.M. Coleman</name>
</author>
<author>
<name sortKey="Matthews, K L" uniqKey="Matthews K">K.L. Matthews</name>
</author>
<author>
<name sortKey="Goicochea, L" uniqKey="Goicochea L">L. Goicochea</name>
</author>
<author>
<name sortKey="Frieman, M M" uniqKey="Frieman M">M.M. Frieman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C" uniqKey="Wohlford Lenane C">C. Wohlford-Lenane</name>
</author>
<author>
<name sortKey="Agnihothramn, S S" uniqKey="Agnihothramn S">S.S. Agnihothramn</name>
</author>
<author>
<name sortKey="Fett, C" uniqKey="Fett C">C. Fett</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, A S" uniqKey="Agrawal A">A.S. Agrawal</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T. Garron</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
<author>
<name sortKey="Peng, B H" uniqKey="Peng B">B.H. Peng</name>
</author>
<author>
<name sortKey="Wakamiya, M" uniqKey="Wakamiya M">M. Wakamiya</name>
</author>
<author>
<name sortKey="Chan, T S" uniqKey="Chan T">T.S. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houdebine, L M" uniqKey="Houdebine L">L.M. Houdebine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peck, K M" uniqKey="Peck K">K.M. Peck</name>
</author>
<author>
<name sortKey="Cockrell, A S" uniqKey="Cockrell A">A.S. Cockrell</name>
</author>
<author>
<name sortKey="Yount, B L" uniqKey="Yount B">B.L. Yount</name>
</author>
<author>
<name sortKey="Scobey, T" uniqKey="Scobey T">T. Scobey</name>
</author>
<author>
<name sortKey="Baric, R S" uniqKey="Baric R">R.S. Baric</name>
</author>
<author>
<name sortKey="Heise, M T" uniqKey="Heise M">M.T. Heise</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cockrell, A S" uniqKey="Cockrell A">A.S. Cockrell</name>
</author>
<author>
<name sortKey="Yount, B L" uniqKey="Yount B">B.L. Yount</name>
</author>
<author>
<name sortKey="Scobey, T" uniqKey="Scobey T">T. Scobey</name>
</author>
<author>
<name sortKey="Jensen, K" uniqKey="Jensen K">K. Jensen</name>
</author>
<author>
<name sortKey="Douglas, M" uniqKey="Douglas M">M. Douglas</name>
</author>
<author>
<name sortKey="Beall, A" uniqKey="Beall A">A. Beall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tai, W" uniqKey="Tai W">W. Tai</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G. Zhao</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S. Sun</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, H" uniqKey="Qiu H">H. Qiu</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S. Sun</name>
</author>
<author>
<name sortKey="Xiao, H" uniqKey="Xiao H">H. Xiao</name>
</author>
<author>
<name sortKey="Feng, J" uniqKey="Feng J">J. Feng</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
<author>
<name sortKey="Tai, W" uniqKey="Tai W">W. Tai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pascal, K E" uniqKey="Pascal K">K.E. Pascal</name>
</author>
<author>
<name sortKey="Coleman, C M" uniqKey="Coleman C">C.M. Coleman</name>
</author>
<author>
<name sortKey="Mujica, A O" uniqKey="Mujica A">A.O. Mujica</name>
</author>
<author>
<name sortKey="Kamat, V" uniqKey="Kamat V">V. Kamat</name>
</author>
<author>
<name sortKey="Badithe, A" uniqKey="Badithe A">A. Badithe</name>
</author>
<author>
<name sortKey="Fairhurst, J" uniqKey="Fairhurst J">J. Fairhurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Benedictis, P" uniqKey="De Benedictis P">P. de Benedictis</name>
</author>
<author>
<name sortKey="Marciano, S" uniqKey="Marciano S">S. Marciano</name>
</author>
<author>
<name sortKey="Scaravelli, D" uniqKey="Scaravelli D">D. Scaravelli</name>
</author>
<author>
<name sortKey="Priori, P" uniqKey="Priori P">P. Priori</name>
</author>
<author>
<name sortKey="Zecchin, B" uniqKey="Zecchin B">B. Zecchin</name>
</author>
<author>
<name sortKey="Capua, I" uniqKey="Capua I">I. Capua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Z A" uniqKey="Memish Z">Z.A. Memish</name>
</author>
<author>
<name sortKey="Mishra, N" uniqKey="Mishra N">N. Mishra</name>
</author>
<author>
<name sortKey="Olival, K J" uniqKey="Olival K">K.J. Olival</name>
</author>
<author>
<name sortKey="Fagbo, S F" uniqKey="Fagbo S">S.F. Fagbo</name>
</author>
<author>
<name sortKey="Kapoor, V" uniqKey="Kapoor V">V. Kapoor</name>
</author>
<author>
<name sortKey="Epstein, J H" uniqKey="Epstein J">J.H. Epstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V.J. Munster</name>
</author>
<author>
<name sortKey="Adney, D R" uniqKey="Adney D">D.R. Adney</name>
</author>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N. van Doremalen</name>
</author>
<author>
<name sortKey="Brown, V R" uniqKey="Brown V">V.R. Brown</name>
</author>
<author>
<name sortKey="Miazgowicz, K L" uniqKey="Miazgowicz K">K.L. Miazgowicz</name>
</author>
<author>
<name sortKey="Milne Price, S" uniqKey="Milne Price S">S. Milne-Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V.M. Corman</name>
</author>
<author>
<name sortKey="Jores, J" uniqKey="Jores J">J. Jores</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B. Meyer</name>
</author>
<author>
<name sortKey="Younan, M" uniqKey="Younan M">M. Younan</name>
</author>
<author>
<name sortKey="Liljander, A" uniqKey="Liljander A">A. Liljander</name>
</author>
<author>
<name sortKey="Said, M Y" uniqKey="Said M">M.Y. Said</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M.A. Müller</name>
</author>
<author>
<name sortKey="Gutierrez, C" uniqKey="Gutierrez C">C. Gutierrez</name>
</author>
<author>
<name sortKey="Godeke, G J" uniqKey="Godeke G">G.J. Godeke</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B. Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Al Dhahiry, S H" uniqKey="Al Dhahiry S">S.H. Al Dhahiry</name>
</author>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Galiano, M" uniqKey="Galiano M">M. Galiano</name>
</author>
<author>
<name sortKey="Myers, R" uniqKey="Myers R">R. Myers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M.A. Müller</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B. Meyer</name>
</author>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V.M. Corman</name>
</author>
<author>
<name sortKey="Al Masri, M" uniqKey="Al Masri M">M. Al-Masri</name>
</author>
<author>
<name sortKey="Turkestani, A" uniqKey="Turkestani A">A. Turkestani</name>
</author>
<author>
<name sortKey="Ritz, D" uniqKey="Ritz D">D. Ritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farag, E A" uniqKey="Farag E">E.A. Farag</name>
</author>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Mohran, K A" uniqKey="Mohran K">K.A. Mohran</name>
</author>
<author>
<name sortKey="Stalin Raj, V" uniqKey="Stalin Raj V">V. Stalin Raj</name>
</author>
<author>
<name sortKey="Pas, S D" uniqKey="Pas S">S.D. Pas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Farag, E A" uniqKey="Farag E">E.A. Farag</name>
</author>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
<author>
<name sortKey="Lamers, M M" uniqKey="Lamers M">M.M. Lamers</name>
</author>
<author>
<name sortKey="Pas, S D" uniqKey="Pas S">S.D. Pas</name>
</author>
<author>
<name sortKey="Voermans, J" uniqKey="Voermans J">J. Voermans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabir, J S" uniqKey="Sabir J">J.S. Sabir</name>
</author>
<author>
<name sortKey="Lam, T T" uniqKey="Lam T">T.T. Lam</name>
</author>
<author>
<name sortKey="Ahmed, M M" uniqKey="Ahmed M">M.M. Ahmed</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Shen, Y" uniqKey="Shen Y">Y. Shen</name>
</author>
<author>
<name sortKey="Abo Aba, S E" uniqKey="Abo Aba S">S.E. Abo-Aba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, D R" uniqKey="Adney D">D.R. Adney</name>
</author>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N. van Doremalen</name>
</author>
<author>
<name sortKey="Brown, V R" uniqKey="Brown V">V.R. Brown</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T. Bushmaker</name>
</author>
<author>
<name sortKey="Scott, D" uniqKey="Scott D">D. Scott</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. de Wit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, D R" uniqKey="Adney D">D.R. Adney</name>
</author>
<author>
<name sortKey="Bielefeldt Ohmann, H" uniqKey="Bielefeldt Ohmann H">H. Bielefeldt-Ohmann</name>
</author>
<author>
<name sortKey="Hartwig, A E" uniqKey="Hartwig A">A.E. Hartwig</name>
</author>
<author>
<name sortKey="Bowen, R A" uniqKey="Bowen R">R.A. Bowen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crameri, G" uniqKey="Crameri G">G. Crameri</name>
</author>
<author>
<name sortKey="Durr, P A" uniqKey="Durr P">P.A. Durr</name>
</author>
<author>
<name sortKey="Klein, R" uniqKey="Klein R">R. Klein</name>
</author>
<author>
<name sortKey="Foord, A" uniqKey="Foord A">A. Foord</name>
</author>
<author>
<name sortKey="Yu, M" uniqKey="Yu M">M. Yu</name>
</author>
<author>
<name sortKey="Riddell, S" uniqKey="Riddell S">S. Riddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vergara Alert, J" uniqKey="Vergara Alert J">J. Vergara-Alert</name>
</author>
<author>
<name sortKey="Van Den Brand, J M" uniqKey="Van Den Brand J">J.M. van den Brand</name>
</author>
<author>
<name sortKey="Widagdo, W" uniqKey="Widagdo W">W. Widagdo</name>
</author>
<author>
<name sortKey="Mu Oz, M" uniqKey="Mu Oz M">M. Muñoz</name>
</author>
<author>
<name sortKey="Raj, S" uniqKey="Raj S">S. Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
<author>
<name sortKey="Schilp, C" uniqKey="Schilp C">C. Schilp</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="De Bruin, E" uniqKey="De Bruin E">E. De Bruin</name>
</author>
<author>
<name sortKey="Kohl, R H" uniqKey="Kohl R">R.H. Kohl</name>
</author>
<author>
<name sortKey="Farag, E A" uniqKey="Farag E">E.A. Farag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohd, H A" uniqKey="Mohd H">H.A. Mohd</name>
</author>
<author>
<name sortKey="Al Tawfiq, J A" uniqKey="Al Tawfiq J">J.A. Al-Tawfiq</name>
</author>
<author>
<name sortKey="Memish, Z A" uniqKey="Memish Z">Z.A. Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Van Den Brand, J M" uniqKey="Van Den Brand J">J.M. van den Brand</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Volz, A" uniqKey="Volz A">A. Volz</name>
</author>
<author>
<name sortKey="Wohlsein, P" uniqKey="Wohlsein P">P. Wohlsein</name>
</author>
<author>
<name sortKey="Smits, S L" uniqKey="Smits S">S.L. Smits</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Van Den Brand, J M" uniqKey="Van Den Brand J">J.M. van den Brand</name>
</author>
<author>
<name sortKey="Provacia, L B" uniqKey="Provacia L">L.B. Provacia</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Stittelaar, K J" uniqKey="Stittelaar K">K.J. Stittelaar</name>
</author>
<author>
<name sortKey="Getu, S" uniqKey="Getu S">S. Getu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, J F" uniqKey="Chan J">J.F. Chan</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y. Yao</name>
</author>
<author>
<name sortKey="Yeung, M L" uniqKey="Yeung M">M.L. Yeung</name>
</author>
<author>
<name sortKey="Deng, W" uniqKey="Deng W">W. Deng</name>
</author>
<author>
<name sortKey="Bao, L" uniqKey="Bao L">L. Bao</name>
</author>
<author>
<name sortKey="Jia, L" uniqKey="Jia L">L. Jia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, R F" uniqKey="Johnson R">R.F. Johnson</name>
</author>
<author>
<name sortKey="Via, L E" uniqKey="Via L">L.E. Via</name>
</author>
<author>
<name sortKey="Kumar, M R" uniqKey="Kumar M">M.R. Kumar</name>
</author>
<author>
<name sortKey="Cornish, J P" uniqKey="Cornish J">J.P. Cornish</name>
</author>
<author>
<name sortKey="Yellayi, S" uniqKey="Yellayi S">S. Yellayi</name>
</author>
<author>
<name sortKey="Huzella, L" uniqKey="Huzella L">L. Huzella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, W C" uniqKey="Davis W">W.C. Davis</name>
</author>
<author>
<name sortKey="Heirman, L R" uniqKey="Heirman L">L.R. Heirman</name>
</author>
<author>
<name sortKey="Hamilton, M J" uniqKey="Hamilton M">M.J. Hamilton</name>
</author>
<author>
<name sortKey="Parish, S M" uniqKey="Parish S">S.M. Parish</name>
</author>
<author>
<name sortKey="Barrington, G M" uniqKey="Barrington G">G.M. Barrington</name>
</author>
<author>
<name sortKey="Loftis, A" uniqKey="Loftis A">A. Loftis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eichler, E E" uniqKey="Eichler E">E.E. Eichler</name>
</author>
<author>
<name sortKey="Dejong, P J" uniqKey="Dejong P">P.J. DeJong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, B J" uniqKey="Cowling B">B.J. Cowling</name>
</author>
<author>
<name sortKey="Park, M" uniqKey="Park M">M. Park</name>
</author>
<author>
<name sortKey="Fang, V J" uniqKey="Fang V">V.J. Fang</name>
</author>
<author>
<name sortKey="Wu, P" uniqKey="Wu P">P. Wu</name>
</author>
<author>
<name sortKey="Leung, G M" uniqKey="Leung G">G.M. Leung</name>
</author>
<author>
<name sortKey="Wu, J T" uniqKey="Wu J">J.T. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Yi, L" uniqKey="Yi L">L. Yi</name>
</author>
<author>
<name sortKey="Zou, L" uniqKey="Zou L">L. Zou</name>
</author>
<author>
<name sortKey="Zhong, H" uniqKey="Zhong H">H. Zhong</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L. Liang</name>
</author>
<author>
<name sortKey="Song, T" uniqKey="Song T">T. Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Korean Society Of Infectious Diseases" uniqKey="Korean Society Of Infectious Diseases">Korean Society of Infectious Diseases</name>
</author>
<author>
<name sortKey="Korean Society For Healthcare Associated Infection Control And Prevention" uniqKey="Korean Society For Healthcare Associated Infection Control And Prevention">Korean Society for Healthcare-associated Infection Control and Prevention</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Tawfiq, J A" uniqKey="Al Tawfiq J">J.A. Al-Tawfiq</name>
</author>
<author>
<name sortKey="Zumla, A" uniqKey="Zumla A">A. Zumla</name>
</author>
<author>
<name sortKey="Memish, Z A" uniqKey="Memish Z">Z.A. Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roper, R L" uniqKey="Roper R">R.L. Roper</name>
</author>
<author>
<name sortKey="Rehm, K E" uniqKey="Rehm K">K.E. Rehm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda Okubo, Y" uniqKey="Honda Okubo Y">Y. Honda-Okubo</name>
</author>
<author>
<name sortKey="Barnard, D" uniqKey="Barnard D">D. Barnard</name>
</author>
<author>
<name sortKey="Ong, C H" uniqKey="Ong C">C.H. Ong</name>
</author>
<author>
<name sortKey="Peng, B H" uniqKey="Peng B">B.H. Peng</name>
</author>
<author>
<name sortKey="Tseng, C T" uniqKey="Tseng C">C.T. Tseng</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wirblich, C" uniqKey="Wirblich C">C. Wirblich</name>
</author>
<author>
<name sortKey="Coleman, C M" uniqKey="Coleman C">C.M. Coleman</name>
</author>
<author>
<name sortKey="Kurup, D" uniqKey="Kurup D">D. Kurup</name>
</author>
<author>
<name sortKey="Abraham, T S" uniqKey="Abraham T">T.S. Abraham</name>
</author>
<author>
<name sortKey="Bernbaum, J G" uniqKey="Bernbaum J">J.G. Bernbaum</name>
</author>
<author>
<name sortKey="Jahrling, P B" uniqKey="Jahrling P">P.B. Jahrling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simon, J H" uniqKey="Simon J">J.H. Simon</name>
</author>
<author>
<name sortKey="Claassen, E" uniqKey="Claassen E">E. Claassen</name>
</author>
<author>
<name sortKey="Correa, C E" uniqKey="Correa C">C.E. Correa</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D. Osterhaus</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">One Health</journal-id>
<journal-id journal-id-type="iso-abbrev">One Health</journal-id>
<journal-title-group>
<journal-title>One Health</journal-title>
</journal-title-group>
<issn pub-type="epub">2352-7714</issn>
<publisher>
<publisher-name>Elsevier</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28616501</article-id>
<article-id pub-id-type="pmc">5454147</article-id>
<article-id pub-id-type="publisher-id">S2352-7714(16)30082-9</article-id>
<article-id pub-id-type="doi">10.1016/j.onehlt.2017.03.001</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au0005">
<name>
<surname>Vergara-Alert</surname>
<given-names>Júlia</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au0010">
<name>
<surname>Vidal</surname>
<given-names>Enric</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au0015">
<name>
<surname>Bensaid</surname>
<given-names>Albert</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au0020">
<name>
<surname>Segalés</surname>
<given-names>Joaquim</given-names>
</name>
<email>joaquim.segales@irta.cat</email>
<xref rid="af0010" ref-type="aff">b</xref>
<xref rid="af0015" ref-type="aff">c</xref>
<xref rid="cr0005" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="af0005">
<label>a</label>
IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</aff>
<aff id="af0010">
<label>b</label>
UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain</aff>
<aff id="af0015">
<label>c</label>
Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Barcelona, Spain</aff>
<author-notes>
<corresp id="cr0005">
<label></label>
Corresponding author at: Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
<email>joaquim.segales@irta.cat</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>3</day>
<month>3</month>
<year>2017</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>6</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>3</day>
<month>3</month>
<year>2017</year>
</pub-date>
<volume>3</volume>
<fpage>34</fpage>
<lpage>40</lpage>
<history>
<date date-type="received">
<day>15</day>
<month>12</month>
<year>2016</year>
</date>
<date date-type="rev-recd">
<day>10</day>
<month>2</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>2</day>
<month>3</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© 2017 The Authors</copyright-statement>
<copyright-year>2017</copyright-year>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="ab0005">
<p>Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.</p>
</abstract>
<kwd-group id="ks0005">
<title>Keywords</title>
<kwd>Animal model</kwd>
<kwd>Coronavirus (CoV)</kwd>
<kwd>Emerging pathogen</kwd>
<kwd>Middle East respiratory syndrome (MERS)</kwd>
<kwd>Reservoir</kwd>
</kwd-group>
<kwd-group id="ks0010">
<title>Abbreviations</title>
<kwd>BSL, biosafety level</kwd>
<kwd>DPP4, dipeptidyl peptidase-4</kwd>
<kwd>FDA, Food and Drug Administration</kwd>
<kwd>HCoV, human coronaviruses</kwd>
<kwd>hDPP4, human dipeptidyl peptidase-4</kwd>
<kwd>MERS-CoV, Middle East respiratory syndrome coronavirus</kwd>
<kwd>NHP, Nonhuman primates</kwd>
<kwd>PI, post-inoculation</kwd>
<kwd>RDB, receptor binding domain</kwd>
<kwd>SARS-CoV, severe acute respiratory syndrome coronavirus</kwd>
<kwd>URT, upper respiratory tract</kwd>
<kwd>WHO, World Health Organization</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s0005">
<label>1</label>
<title>Introduction</title>
<p id="p0185">Over the past years, outbreaks of zoonotic diseases and growing resistance against antibiotics have emphasized the need for interdisciplinary collaboration between human health, veterinary medicine and environmental sciences, a concept commonly known as “One health”
<xref rid="bb0005" ref-type="bibr">[1]</xref>
. Most of emerging diseases are zoonotic
<xref rid="bb0010" ref-type="bibr">[2]</xref>
. For instance, the human flu pandemics have originated in domestic animals and wildlife, and have been driven by ecological, behavioral, or socioeconomic changes
<xref rid="bb0015" ref-type="bibr">[3]</xref>
. In these cases, the reaction time between detection of a new outbreak and application of medical countermeasures are critical in terms of epidemic control. To understand the potential role that animal sources could play in virus dissemination and the epidemiology of the disease, surveillance studies, as well as experimental infections in potential target species, are required. Furthermore, after having identified the novel or re-emerged virus responsible of the outbreak, it is important to rapidly provide an accurate diagnosis as a basis for quarantine measures. It is also imperative to focus on the search for new vaccines and treatments for highly pathogenic viruses, especially for those that represent a threat to human and animal health, particularly livestock.</p>
<p id="p0190">Until the beginning of the last decade, human coronaviruses (HCoV) infections were considered to be restricted to the upper respiratory tract (URT), with low mortality rate, and recognized as the second ranked cause of the common cold after rhinoviruses
<xref rid="bb0020" ref-type="bibr">[4]</xref>
. However, in the late-2002, the severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in China. It rapidly spread worldwide with more than 8000 causalities and a lethality rate of 10%
<xref rid="bb0025" ref-type="bibr">[5]</xref>
. Ten years later, a novel HCoV associated with severe pneumonia emerged in the Kingdom of Saudi Arabia
<xref rid="bb0030" ref-type="bibr">[6]</xref>
. The new CoV was named Middle East respiratory syndrome coronavirus (MERS-CoV), and by March 2014, a total of 207 cases and 45% fatalities were recorded. One month later, only in April 2014, an increase in human cases was registered with at least 217 more infected people and 38 fatalities. More recently, as of December 2016, 1842 cases of MERS-CoV have been reported to the World Health Organization (WHO), including at least 652 deaths
<xref rid="bb0035" ref-type="bibr">[7]</xref>
.</p>
<p id="p0195">Besides coronaviruses, highly pathogenic viruses belonging to other families represent a threat to either human or animal health, or both. One of the most recent examples is the outbreak of Ebola virus (
<italic>Filoviridae</italic>
) in West Africa, which started in December of 2013 in Guinea and evolved as the largest Ebola outbreak recorded with more than 28,600 cases
<xref rid="bb0040" ref-type="bibr">[8]</xref>
. Furthermore, during recent years, outbreaks caused by other emerging viral pathogens from
<italic>Arenaviridae, Bunyaviridae,</italic>
and
<italic>Flaviviridae</italic>
families among others, disturbed public and private health, social networks and the economies of the affected countries
<xref rid="bb0045" ref-type="bibr">[9]</xref>
,
<xref rid="bb0050" ref-type="bibr">[10]</xref>
. Prevention and control of emerging and reemerging viral diseases is efficient when several actions are combined: i.e. creating diagnostic networks and surveillance programs, training medical and veterinary staff, informing the population about sanitary measures, and also promoting research on prophylaxis, treatments and on the causative agent pathogenesis. Regarding the last point, animal models are crucial to study the viral and host factors contributing to the disease as well as transmission outcomes of virus infection and to allow pre-clinical testing of antiviral drugs and vaccines. Non-human primates (NHP) are the preferred models for pathogenesis studies, and potential vaccine and treatment testing, as they better translate to humans
<xref rid="bb0055" ref-type="bibr">[11]</xref>
. However, working with NHP is costly, with limited availability, and raises ethical problems. Therefore small-animal models are usually the first choice for drug screening. The United States Food and Drug Administration's (FDA) Animal Rule provides guidelines concerning the appropriateness of animal models for licensing purposes
<xref rid="bb0060" ref-type="bibr">[12]</xref>
. Additionally, by controlling the disease in animal reservoirs and/or in intermediate hosts, virus transmission to humans can be significantly reduced
<xref rid="bb0065" ref-type="bibr">[13]</xref>
,
<xref rid="bb0070" ref-type="bibr">[14]</xref>
. This is particularly true for domestic or feral animals for which efficient vaccines and vaccination strategies can be implemented
<xref rid="bb0075" ref-type="bibr">[15]</xref>
. Therefore, in cases of new pathogenic virus outbreaks, the search for natural hosts or potential target animals (as opposed to laboratory animals) seems to be relevant not only to implement prophylactic solutions but also to improve the preparedness for an eventual global extension of diseases. Nowadays, this task is rendered possible by the availability of improved biosafety levels 3 and 4 (BSL3 and 4) animal facilities, which can accommodate large animal experimentation with such highly virulent pathogens
<xref rid="bb0080" ref-type="bibr">[16]</xref>
.</p>
<p id="p0200">In this article, the current situation of comprehension on potential hosts for MERS-CoV is reviewed. Based on the coronaviruses experience, benefits and limitations of these species as animal models and transmission studies are discussed.</p>
</sec>
<sec id="s0010">
<label>2</label>
<title>Animal models for MERS research</title>
<p id="p0205">Several review articles have described and discussed animal models for MERS-CoV infection
<xref rid="bb0085" ref-type="bibr">[17]</xref>
,
<xref rid="bb0090" ref-type="bibr">[18]</xref>
,
<xref rid="bb0095" ref-type="bibr">[19]</xref>
,
<xref rid="bb0100" ref-type="bibr">[20]</xref>
. In this section, the current status of animal models for MERS disease reproduction is briefly summarized.</p>
<p id="p0210">After the identification of MERS-CoV in 2012
<xref rid="bb0030" ref-type="bibr">[6]</xref>
, the efforts were directed to develop an animal model to study pathogenesis and to test the efficacy of vaccines and/or treatments in vivo. Similar to SARS-CoV, rhesus macaques have demonstrated susceptibility to MERS-CoV
<xref rid="bb0105" ref-type="bibr">[21]</xref>
,
<xref rid="bb0110" ref-type="bibr">[22]</xref>
,
<xref rid="bb0115" ref-type="bibr">[23]</xref>
. A work led by Munster demonstrated that the common marmoset is also suitable as a MERS-CoV model
<xref rid="bb0120" ref-type="bibr">[24]</xref>
. They showed that this model recapitulates the disease observed in humans; therefore, findings in the evaluation of potential therapeutic strategies might be implemented in humans. However, small animals are required for controlled, large and comprehensive studies. While, at first, experiences with SARS-CoV turned out to be very helpful for the research on MERS-CoV, the development of a small animal model for MERS was a more difficult task
<xref rid="bb0090" ref-type="bibr">[18]</xref>
,
<xref rid="bb0095" ref-type="bibr">[19]</xref>
. Raj and collaborators rapidly identified dipeptidyl peptidase-4 (DPP4) as the functional receptor for MERS-CoV
<xref rid="bb0125" ref-type="bibr">[25]</xref>
, and DPP4 is present in lung cells of many rodents. Thus, rodents were expected to be susceptible for MERS-CoV. However, and as predicted by the crystal structure analysis of the MERS-CoV receptor binding domain (RBD) with the human DPP4 (hDDP4) extracellular domain
<xref rid="bb0130" ref-type="bibr">[26]</xref>
, so far, no rodent model is naturally permissive for MERS-CoV infection. In Syrian hamster, the DPP4 receptor was shown to be expressed on bronchiolar epithelium, but inoculation of MERS-CoV via aerosols or intratracheal routes with different doses did not lead to productive infection
<xref rid="bb0135" ref-type="bibr">[27]</xref>
. Wild type and immune-deficient mice were also tested for MERS-CoV infection without success
<xref rid="bb0140" ref-type="bibr">[28]</xref>
. Since then, several groups have been focused on new strategies to develop a small animal model susceptible to MERS-CoV infection. It was found that mouse cells could be made permissive for MERS-CoV when expressing hDPP4. Consequently, the hDPP4 was transduced into mouse lungs using an adenovirus vector, which resulted in animals susceptible to MERS-CoV infection. These mice exhibited pneumonia and extensive inflammatory-cell infiltration with the presence of virus in the lungs
<xref rid="bb0145" ref-type="bibr">[29]</xref>
. Recently, a transgenic mice model expressing hDPP4, highly susceptible to MERS-CoV infection and able to display systemic lesions, has been developed
<xref rid="bb0150" ref-type="bibr">[30]</xref>
. As demonstrated for several diseases, transgenic animal models have become an important tool to improve medical research
<xref rid="bb0155" ref-type="bibr">[31]</xref>
. On the other hand, glycosylation of the murine DPP4 is a major factor impacting the receptor function by blocking the binding to MERS-CoV
<xref rid="bb0160" ref-type="bibr">[32]</xref>
. Therefore, the modification of the mouse genome to match the sequence in the hDPP4 made this species susceptible to MERS-CoV infection
<xref rid="bb0165" ref-type="bibr">[33]</xref>
. Accordingly, these newly established mice models are useful to evaluate the efficacy of vaccines and therapeutic agents against MERS-CoV infection
<xref rid="bb0150" ref-type="bibr">[30]</xref>
,
<xref rid="bb0170" ref-type="bibr">[34]</xref>
,
<xref rid="bb0175" ref-type="bibr">[35]</xref>
,
<xref rid="bb0180" ref-type="bibr">[36]</xref>
. VelocImmune and VelociGene technologies have been used to develop a humanized mouse model for MERS-CoV infection
<xref rid="bb0180" ref-type="bibr">[36]</xref>
; these methodologies can be also applied for other pathogens in future emerging epidemics.</p>
</sec>
<sec id="s0015">
<label>3</label>
<title>MERS-CoV animal reservoir and the role of domestic animals</title>
<p id="p0215">Researchers worldwide have identified several animal species which could have a role in the transmission of MERS-CoV to humans (summarized in
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
). Bats have been suggested to be the reservoir for MERS-CoV, but RNA of MERS-like CoVs (and no MERS-CoV) has been found in several bat families (
<italic>Vespertillionidae, Molosidae, Nycteridae</italic>
and
<italic>Emballonuridae</italic>
) in Africa, America, Asia and Europe
<xref rid="bb0185" ref-type="bibr">[37]</xref>
,
<xref rid="bb0190" ref-type="bibr">[38]</xref>
. Recently, an experimental infection with Jamaican fruit bats (
<italic>Artibeus jamaicensis</italic>
) confirmed that MERS-CoV can replicate in bats
<xref rid="bb0195" ref-type="bibr">[39]</xref>
. However, MERS-CoV strains causing disease in humans have not been so far identified in bats. The presence of MERS-CoV neutralizing antibodies has been reported in dromedary camels (
<italic>Camelus dromedaries</italic>
)
<xref rid="bb0200" ref-type="bibr">[40]</xref>
,
<xref rid="bb0205" ref-type="bibr">[41]</xref>
and, more recently, a link between MERS-CoV infection in camels and a human infection in Qatar has been suggested
<xref rid="bb0210" ref-type="bibr">[42]</xref>
,
<xref rid="bb0215" ref-type="bibr">[43]</xref>
,
<xref rid="bb0220" ref-type="bibr">[44]</xref>
,
<xref rid="bb0225" ref-type="bibr">[45]</xref>
. Most importantly, the MERS-CoV strain that caused the 2015 human outbreak was found in dromedary camels; in fact, phylogenetic analyses indicate that MERS-CoV was generated in this species by recombination
<xref rid="bb0230" ref-type="bibr">[46]</xref>
. In addition, Adney and collaborators have provided experimental evidence to support the role of dromedary camels as a MERS-CoV reservoir
<xref rid="bb0235" ref-type="bibr">[47]</xref>
. Recently, evidence was provided that other members of the
<italic>Camelidae</italic>
family such as alpaca (
<italic>Vicugna pacos</italic>
) and llama (
<italic>Lama glama</italic>
), are also susceptible to MERS-CoV infection
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
,
<xref rid="bb0250" ref-type="bibr">[50]</xref>
. Field studies with alpacas performed in Qatar confirmed this finding
<xref rid="bb0255" ref-type="bibr">[51]</xref>
. A recently published experimental study has demonstrated that domestic pigs are also susceptible to MERS-CoV infection, suggesting the possibility of MERS-CoV circulation in other unsuspected animal species such suidae
<xref rid="bb0250" ref-type="bibr">[50]</xref>
. While DPP4 in silico predictions and in vitro studies suggested that other livestock species such as goats, sheep, or horses could be susceptible to MERS-CoV infection, experimental data suggested the opposite
<xref rid="bb0250" ref-type="bibr">[50]</xref>
. Each natural and potential host for MERS-CoV infection is discussed below in detail and summarized in
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="t0010" ref-type="table">Table 2</xref>
.
<fig id="f0005">
<label>Fig. 1</label>
<caption>
<p>Illustration of the known and potential host range of Middle East respiratory syndrome coronavirus (MERS-CoV). Dromedary camel is a demonstrated reservoir of MERS-CoV, but other species might act as hosts. In red: reported MERS-CoV-seropositive species and/or species in which virus has been naturally detected. In orange: other animal species that might be considered potential hosts since they are experimentally susceptible to MERS-CoV infection. Alpacas fit into both scenarios (red and orange). In black: animals (bats, to date) in which RNA of different sequences of MERS-CoV-like viruses have been found. Continuous arrows represent already described intra- and inter-species transmission events. Discontinuous arrows represent potential inter-species transmission.</p>
</caption>
<alt-text id="al0005">Fig. 1</alt-text>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
<table-wrap position="float" id="t0005">
<label>Table 1</label>
<caption>
<p>Summary of MERS-CoV shedding and presence of virus in different tissues in the potential animal reservoirs for MERS-CoV after experimental inoculation.</p>
</caption>
<alt-text id="al0010">Table 1</alt-text>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Route and dose of inoculation</th>
<th>MERS-CoV shedding</th>
<th>MERS-CoV RNA in tissues
<break></break>
MERS-CoV antigen in tissues</th>
<th>Infectious MERS-CoV in tissues</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">Camelids</td>
<td>Dromedary camels
<italic>(Camelus dromedarius)</italic>
</td>
<td>IT, IN, conjunctival or IN only; 10
<sup>7</sup>
TCID
<sub>50</sub>
</td>
<td>Viral RNA in NS (1 to 13 dpi)
<break></break>
Infectious virus in NS (1 to 6 dpi)</td>
<td>URT, LRT, tracheal LN, pulmonary LN, cervical LN, tonsil, PSG, intestine, liver, spleen, kidney, heart, adrenal
<break></break>
Nasal respiratory epithelial cells</td>
<td>URT, trachea, large bronchus, tracheal LN</td>
<td>
<break></break>
<xref rid="bb0235" ref-type="bibr">[47]</xref>
,
<xref rid="bb0265" ref-type="bibr">[53]</xref>
</td>
</tr>
<tr>
<td>Alpacas (
<italic>Vicugna pacos</italic>
)</td>
<td>IN; 10
<sup>7</sup>
PFU in 3 mL saline solution</td>
<td>Infectious virus in NS (1 to 5 dpi)</td>
<td>URT, trachea
<break></break>
Nasal respiratory epithelial cells</td>
<td>ND</td>
<td>
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
</td>
</tr>
<tr>
<td>Llamas (
<italic>Lama glama</italic>
)</td>
<td>IN; 10
<sup>7</sup>
TCID
<sub>50</sub>
in 3 mL saline solution</td>
<td>Viral RNA in NS (1 to 15 dpi)
<break></break>
Infectious virus in NS (1 to 7 dpi)</td>
<td>URT, trachea and bronchus
<break></break>
Nasal respiratory epithelial cells</td>
<td>ND</td>
<td>
<xref rid="bb0250" ref-type="bibr">[50]</xref>
</td>
</tr>
<tr>
<td rowspan="2">Non-camelid domestic species</td>
<td>Domestic pig (
<italic>Sus scrofa domesticus</italic>
)</td>
<td>IN; 10
<sup>7</sup>
TCID
<sub>50</sub>
in 3 mL saline solution</td>
<td>Viral RNA in NS (1 to 10 dpi)
<break></break>
Infectious virus in NS (1 to 4 dpi)</td>
<td>URT, trachea and bronchus
<break></break>
Nasal respiratory epithelial cells</td>
<td>ND</td>
<td>
<xref rid="bb0250" ref-type="bibr">[50]</xref>
</td>
</tr>
<tr>
<td>Rabbit (
<italic>Oryctolagus cuniculus</italic>
)</td>
<td>IN (1 × 10
<sup>6</sup>
TCID
<sub>50</sub>
), IT (4 × 10
<sup>6</sup>
TCID
<sub>50</sub>
)</td>
<td>Viral RNA in NS (1 to 10 dpi)
<break></break>
Infectious virus in NS (1 to 7 dpi)</td>
<td>Mainly in URT, LRT
<break></break>
Nasal respiratory and bronchiolar epithelial cells</td>
<td>ND</td>
<td>
<xref rid="bb0270" ref-type="bibr">[54]</xref>
</td>
</tr>
<tr>
<td rowspan="2">NHP</td>
<td>Rhesus macaques
<italic>(Macaca mulatta)</italic>
</td>
<td>IT, OC, oral, IN; 7 × 10
<sup>6</sup>
TCID
<sub>50</sub>
/IT, 6,5 × 10
<sup>7</sup>
TCID
<sub>50</sub>
</td>
<td>Viral RNA in NS, BAL samples, and few OS</td>
<td>URT, lung, mediastinal LN
<break></break>
Type I and II pneumocytes, alveolar MΦ</td>
<td>Lung</td>
<td>
<xref rid="bb0105" ref-type="bibr">[21]</xref>
,
<xref rid="bb0110" ref-type="bibr">[22]</xref>
,
<xref rid="bb0115" ref-type="bibr">[23]</xref>
</td>
</tr>
<tr>
<td>Common marmoset
<italic>(Callithrix jacchus)</italic>
</td>
<td>OC, oral, IT, IN; 5 × 10
<sup>6</sup>
/IT, 5 × 10
<sup>7</sup>
TCID
<sub>50</sub>
</td>
<td>Viral RNA in NS and OS</td>
<td>URT, lung, mediastinal LN, blood
<break></break>
Type I pneumocytes, alveolar MΦ</td>
<td>Nasal mucosa, trachea, lung</td>
<td>
<xref rid="bb0120" ref-type="bibr">[24]</xref>
,
<xref rid="bb0275" ref-type="bibr">[55]</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Abbreviations: BAL, bronchoalveolar lavages; dpi, days post inoculation; IN, intranasal; IT, intratracheal; LN, lymph node; LRT, lower respiratory tract; MΦ, macrophages; ND, non-determined; NHP, non-human primates; NS, nasal swabs; OC, ocular; OS, oropharyngeal swabs; PFU, plaque-forming units; PSG, parotid salivary gland; RNA, ribonucleic acid; TCID
<sub>50</sub>
, 50% tissue culture infectious dose; URT, upper respiratory tract.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="t0010">
<label>Table 2</label>
<caption>
<p>Summary of clinical signs, pathological findings and target cells in tissues of natural and potential reservoir hosts for MERS-CoV infection as experimental animal models.</p>
</caption>
<alt-text id="al0015">Table 2</alt-text>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Clinical signs</th>
<th>Gross findings</th>
<th>Histopathological lesions</th>
<th>Target cells in tissues</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">Camelids</td>
<td>Dromedary camels
<italic>(Camelus dromedarius)</italic>
</td>
<td>Mild respiratory disease, nasal discharge</td>
<td>Not present</td>
<td>Multifocal moderate rhinitis, tracheitis and bronchitis with epithelial necrosis. Hyperplasia of lymph nodes and tonsil</td>
<td>Respiratory epithelial cells in the URT</td>
<td>
<xref rid="bb0235" ref-type="bibr">[47]</xref>
,
<xref rid="bb0265" ref-type="bibr">[53]</xref>
</td>
</tr>
<tr>
<td>Alpacas (
<italic>Vicugna pacos</italic>
)</td>
<td>Not observable</td>
<td>Not present</td>
<td>Squamous metaplasia of the epithelium of the turbinate. Hypertrophy and hyperplasia of lymph nodes</td>
<td>Respiratory epithelial cells in the URT</td>
<td>
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
</td>
</tr>
<tr>
<td>Llamas (
<italic>Lama glama</italic>
)</td>
<td>Mild mucus secretion in one nostril</td>
<td>Not present</td>
<td>Mild to severe rhinitis</td>
<td>Respiratory epithelial cells in the URT</td>
<td>
<xref rid="bb0250" ref-type="bibr">[50]</xref>
</td>
</tr>
<tr>
<td rowspan="2">Non-camelid domestic species</td>
<td>Domestic pig (
<italic>Sus scrofa domesticus</italic>
)</td>
<td>Mild excretion of mucus in the nose</td>
<td>Not present</td>
<td>Mild to severe rhinitis</td>
<td>Respiratory epithelial cells in the URT</td>
<td>
<xref rid="bb0250" ref-type="bibr">[50]</xref>
</td>
</tr>
<tr>
<td>Rabbit (
<italic>Oryctolagus cuniculus</italic>
)</td>
<td>Not observable</td>
<td>Not present</td>
<td>Focal mild to moderate rhinitis with necrosis</td>
<td>Respiratory epithelial cells in the URT</td>
<td>
<xref rid="bb0270" ref-type="bibr">[54]</xref>
</td>
</tr>
<tr>
<td rowspan="2">NHP</td>
<td>Rhesus macaques
<xref rid="tf0005" ref-type="table-fn">a</xref>
<italic>(Macaca mulatta)</italic>
</td>
<td>Fever, mild to moderate respiratory disease</td>
<td>Lung congestion and nodules in lung
<break></break>
No extra pulmonary lesions</td>
<td>Multifocal mild-to-moderate interstitial pneumonia</td>
<td>Type I and II pneumocytes and alveolar macrophages</td>
<td>
<xref rid="bb0105" ref-type="bibr">[21]</xref>
,
<xref rid="bb0110" ref-type="bibr">[22]</xref>
,
<xref rid="bb0115" ref-type="bibr">[23]</xref>
</td>
</tr>
<tr>
<td>Common marmoset
<xref rid="tf0005" ref-type="table-fn">a</xref>
<italic>(Callithrix jacchus)</italic>
</td>
<td>Mild to severe respiratory disease</td>
<td>Congestion of bronchioles</td>
<td>Diffuse interstitial infiltration in lower lung lobes, bronchointerstitial pneumonia</td>
<td>Type I pneumocytes and alveolar macrophages</td>
<td>
<xref rid="bb0120" ref-type="bibr">[24]</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Abbreviations: NHP, non-human primates; URT, upper respiratory tract.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tf0005">
<label>a</label>
<p id="np0005">Also animal models of disease (translation to human).</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<sec id="s0020">
<label>3.1</label>
<title>Camelids</title>
<p id="p0220">Dromedary camels are the main source of MERS-CoV zoonotic transmission (reviewed in
<xref rid="bb0260" ref-type="bibr">[52]</xref>
). In experimental intranasal inoculations with MERS-CoV, only mild clinical signs (i.e. nasal discharge) with URT infection were observed. Viral RNA was detected in nasal swabs, in upper and lower respiratory tracts, and also in extra-pulmonary tissues (i.e. lymph nodes, tonsil, intestine, liver, adrenal gland, etc.). In contrast, infectious virus was only detected in the URT, trachea, large bronchus and tracheobronchial lymph node. Gross lesions were not observed in dromedary camels, but inflammation in the nasal cavity, trachea and bronchus was present. The virus replication in dromedaries was only detected in epithelial cells in the URT
<xref rid="bb0235" ref-type="bibr">[47]</xref>
,
<xref rid="bb0265" ref-type="bibr">[53]</xref>
.</p>
<p id="p0225">Llamas and alpacas, also known as domestic new world camelids, developed a similar clinical-pathological picture to that of dromedaries after experimental MERS-CoV infection. In both species the virus was inoculated via intranasal route, and either no clinical signs (alpacas) or mild mucus secretion (llamas) was observed. MERS-CoV was detected in nasal swabs, and in the URT and trachea of both llamas and alpacas. None of the species showed lesions macroscopically, but microscopically mild to severe rhinitis was detected in alpacas as well as metaplasia of the epithelium of the turbinate in alpacas. Similar to dromedaries, the epithelial cells in the URT were the main target cells for virus replication. Concomitant to an antibody response, the virus was cleared from the URT 7 to 10 days after experimental infection
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
,
<xref rid="bb0250" ref-type="bibr">[50]</xref>
.</p>
</sec>
<sec id="s0025">
<label>3.2</label>
<title>Non-camelid domestic species</title>
<p id="p0230">After intranasal inoculation of MERS-CoV, only mild excretion of mucus was observed in 6 to 8-week old domestic pigs
<xref rid="bb0250" ref-type="bibr">[50]</xref>
. Viral RNA was detected in nasal swabs, in the URT, trachea and bronchus. Although gross lesions were not present in pigs, they showed mild to moderate rhinitis, with virus replication observed in the epithelial cells in the URT. Shedding of MERS-CoV was detected in nasal swabs from days 1 to 10 PI, but infectious virus was only detected until day 4 PI. Viral RNA was also detected in the URT, trachea and bronchus
<xref rid="bb0250" ref-type="bibr">[50]</xref>
.</p>
<p id="p0235">New Zealand white rabbits did not exhibit clinical signs or significant gross lesions at necropsy after experimental MERS-CoV inoculation; thus, they were considered an animal model of asymptomatic infection
<xref rid="bb0270" ref-type="bibr">[54]</xref>
. Similar to pigs, mild to moderate rhinitis with necrosis was observed, and respiratory epithelial cells in the URT were identified as the target cells for MERS-CoV replication. Viral RNA was present in nasal swabs, and upper and lower respiratory tracts. Infectious virus was also detected in nasal swabs up to 7 days PI
<xref rid="bb0270" ref-type="bibr">[54]</xref>
.</p>
</sec>
<sec id="s0030">
<label>3.3</label>
<title>Non-human primates</title>
<p id="p0240">The rhesus macaque was used as the first animal model developed for MERS-CoV infection, showing mild to moderate respiratory disease from day 1 to 4 PI after intratracheal inoculation
<xref rid="bb0105" ref-type="bibr">[21]</xref>
. Gross lesions were present only in the lung, consisting in congestion and presence of nodules, and the main observed microscopical lesion was interstitial pneumonia. Although MERS-CoV RNA was detected in nasal swabs, bronchoalveolar lavage samples, oropharyngeal swabs, and also in some upper and lower respiratory tract tissue samples, infectious virus was only isolated from the lungs. MERS-CoV replication occurred in type I and II pneumocytes, and viral antigen co-localized with sites of pneumonia
<xref rid="bb0105" ref-type="bibr">[21]</xref>
. Macaques represent a useful model to study mild MERS-CoV infection because they develop a transient respiratory disease similar to humans.</p>
<p id="p0245">On the other hand, common marmosets exhibited moderate to severe respiratory disease from 1 to 13 days after inoculation of MERS-CoV through multiple routes (ocular, oral, intratracheal and intranasal)
<xref rid="bb0120" ref-type="bibr">[24]</xref>
. Similar to macaques, gross findings were present only in the lung and correlated with moderate to severe bronchointerstitial pneumonia. MERS-CoV antigen was detected by immunohistochemistry in both type I and II pneumocytes and alveolar macrophages, but the virus replicated only in type I pneumocytes and macrophages. Similar results were observed in marmosets after inoculation of MERS-CoV only via intratracheal route
<xref rid="bb0275" ref-type="bibr">[55]</xref>
. However, the outcome of MERS-CoV infection in marmosets has been controversial after the publication of a recent study by Johnson and collaborators, which demonstrated no lethality after intratracheal inoculation
<xref rid="bb0280" ref-type="bibr">[56]</xref>
. The outcome of experimental infections in both species is reviewed in recent publications
<xref rid="bb0085" ref-type="bibr">[17]</xref>
,
<xref rid="bb0090" ref-type="bibr">[18]</xref>
,
<xref rid="bb0095" ref-type="bibr">[19]</xref>
,
<xref rid="bb0100" ref-type="bibr">[20]</xref>
.</p>
</sec>
</sec>
<sec id="s0035">
<label>4</label>
<title>Advantages and disadvantages of animal hosts used for MERS-CoV experimental infection</title>
<p id="p0250">As described in the previous section, a number of animal species have been described as either natural reservoir (dromedary camel) or potential intermediate hosts of MERS-CoV, each one with its benefits and limitations (
<xref rid="t0015" ref-type="table">Table 3</xref>
) when used as experimental infection models. Camelids (dromedary camels, alpacas and llamas), non-camelid domestic species (pigs and rabbits), and NHP (rhesus macaques and common marmosets) have been experimentally demonstrated to be susceptible to MERS-CoV infection, but with differences among them
<xref rid="bb0105" ref-type="bibr">[21]</xref>
,
<xref rid="bb0110" ref-type="bibr">[22]</xref>
,
<xref rid="bb0115" ref-type="bibr">[23]</xref>
,
<xref rid="bb0120" ref-type="bibr">[24]</xref>
,
<xref rid="bb0235" ref-type="bibr">[47]</xref>
,
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
,
<xref rid="bb0250" ref-type="bibr">[50]</xref>
,
<xref rid="bb0265" ref-type="bibr">[53]</xref>
,
<xref rid="bb0270" ref-type="bibr">[54]</xref>
. Experiments with dromedary camels, the natural MERS-CoV host, and probably the first target for controlling MERS through vaccination
<xref rid="bb0265" ref-type="bibr">[53]</xref>
, are costly and represent a high security risk for animal caretakers because of the difficulty in handling these animals under appropriate biosafety conditions. The main advantages of using the llama or alpaca models are that both belong to the family
<italic>Camelidae</italic>
, have smaller size, more gentle behavior, and are more available at a commercial level than dromedary camels; importantly, specific reagents for immune monitoring have been developed for new world camelids
<xref rid="bb0285" ref-type="bibr">[57]</xref>
. Therefore, they may be useful surrogates for dromedaries under experimental conditions. However, both models are also quite expensive and require large and complex BSL3 facilities. In contrast to camelids, other domestic species such as pigs and rabbits are readily available, with lower cost and easier handling. Additionally, an extensive panel of specific-immunological reagents is available for these species. When compared to camelids, however, lower MERS-CoV titers were detected in nasal cavities and tissue samples of pigs and rabbits during the infection. Furthermore their usefulness as animal models for transmission studies has not yet been addressed.
<table-wrap position="float" id="t0015">
<label>Table 3</label>
<caption>
<p>Advantages and limitations of natural and potential intermediate hosts for MERS-CoV infection as experimental animal models as well as for transmission studies.</p>
</caption>
<alt-text id="al0020">Table 3</alt-text>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">Camelids</td>
<td>Dromedary camels
<italic>(Camelus dromedarius)</italic>
</td>
<td>
<list list-type="simple" id="l0005">
<list-item id="li0005">
<label></label>
<p id="p0005">Natural host for MERS-CoV</p>
</list-item>
<list-item id="li0010">
<label></label>
<p id="p0010">Efficient animal-to-animal transmission (field studies)</p>
</list-item>
</list>
</td>
<td>
<list list-type="simple" id="l0010">
<list-item id="li0015">
<label></label>
<p id="p0015">Expensive and limited availability</p>
</list-item>
<list-item id="li0020">
<label></label>
<p id="p0020">Complex husbandry requirements (large BSL3 facilities)</p>
</list-item>
</list>
</td>
</tr>
<tr>
<td>Alpacas (
<italic>Vicugna pacos</italic>
)</td>
<td>
<list list-type="simple" id="l0015">
<list-item id="li0025">
<label></label>
<p id="p0025">Potential surrogates for dromedaries under experimental conditions (potential hosts for MERS-CoV)</p>
</list-item>
<list-item id="li0030">
<label></label>
<p id="p0030">Efficient animal-to-animal transmission (experimental)</p>
</list-item>
</list>
</td>
<td>
<list list-type="simple" id="l0020">
<list-item id="li0035">
<label></label>
<p id="p0035">Expensive and limited availability</p>
</list-item>
<list-item id="li0040">
<label></label>
<p id="p0040">Complex husbandry requirements (large BSL3 facilities)</p>
</list-item>
</list>
</td>
</tr>
<tr>
<td>Llamas (
<italic>Lama glama</italic>
)</td>
<td>
<list list-type="simple" id="l0025">
<list-item id="li0045">
<label></label>
<p id="p0045">Potential surrogates for dromedaries under experimental conditions (potential hosts for MERS-CoV)</p>
</list-item>
</list>
</td>
<td>
<list list-type="simple" id="l0030">
<list-item id="li0050">
<label></label>
<p id="p0050">Expensive and limited availability</p>
</list-item>
<list-item id="li0055">
<label></label>
<p id="p0055">Complex husbandry requirements (large BSL3 facilities)</p>
</list-item>
<list-item id="li0060">
<label></label>
<p id="p0060">No animal-to-animal transmission studies available</p>
</list-item>
</list>
</td>
</tr>
<tr>
<td rowspan="2">Non-camelid domestic species</td>
<td>Domestic pig (
<italic>Sus scrofa domesticus</italic>
)</td>
<td>
<list list-type="simple" id="l0035">
<list-item id="li0065">
<label></label>
<p id="p0065">Relative low cost and readily available</p>
</list-item>
<list-item id="li0070">
<label></label>
<p id="p0070">Ease handling</p>
</list-item>
<list-item id="li0075">
<label></label>
<p id="p0075">Potential surrogates for dromedaries under experimental conditions (potential hosts for MERS-CoV)</p>
</list-item>
<list-item id="li0080">
<label></label>
<p id="p0080">Animal-to-animal transmission (experimental)</p>
</list-item>
<list-item id="li0085">
<label></label>
<p id="p0085">Pig-specific immunological reagents are available</p>
</list-item>
</list>
</td>
<td>
<list list-type="simple" id="l0040">
<list-item id="li0090">
<label></label>
<p id="p0090">Complex husbandry requirements (large BSL3 facilities)</p>
</list-item>
<list-item id="li0095">
<label></label>
<p id="p0095">Limited transmission (only via direct contact, and during few days)</p>
</list-item>
<list-item id="li0100">
<label></label>
<p id="p0100">Lower viral titers in NS and tissues upon infection</p>
</list-item>
</list>
</td>
</tr>
<tr>
<td>Rabbit (
<italic>Oryctolagus cuniculus</italic>
)</td>
<td>
<list list-type="simple" id="l0045">
<list-item id="li0105">
<label></label>
<p id="p0105">Low cost and readily available</p>
</list-item>
<list-item id="li0110">
<label></label>
<p id="p0110">Ease handling</p>
</list-item>
<list-item id="li0115">
<label></label>
<p id="p0115">Potential surrogates for dromedaries under experimental conditions (potential hosts for MERS-CoV)</p>
</list-item>
<list-item id="li0120">
<label></label>
<p id="p0120">Rabbit-specific immunological reagents are available</p>
</list-item>
</list>
</td>
<td>
<list list-type="simple" id="l0050">
<list-item id="li0125">
<label></label>
<p id="p0125">No animal-to-animal transmission studies available</p>
</list-item>
<list-item id="li0130">
<label></label>
<p id="p0130">Lower viral titers in NS and tissues upon infection</p>
</list-item>
</list>
</td>
</tr>
<tr>
<td rowspan="2">NHP</td>
<td>Rhesus macaques
<italic>(Macaca mulatta)</italic>
</td>
<td>
<list list-type="simple" id="l0055">
<list-item id="li0135">
<label></label>
<p id="p0135">Human-specific immunological reagents are widely available</p>
</list-item>
<list-item id="li0140">
<label></label>
<p id="p0140">Clinical disease similar to humans: translational research (for intra species transmission)</p>
</list-item>
</list>
</td>
<td>
<list list-type="simple" id="l0060">
<list-item id="li0145">
<label></label>
<p id="p0145">Expensive and limited availability</p>
</list-item>
<list-item id="li0150">
<label></label>
<p id="p0150">Complex husbandry requirements (large BSL3 facilities)</p>
</list-item>
<list-item id="li0155">
<label></label>
<p id="p0155">No animal-to-animal transmission studies available</p>
</list-item>
</list>
</td>
</tr>
<tr>
<td>Common marmoset
<italic>(Callithrix jacchus)</italic>
</td>
<td>
<list list-type="simple" id="l0065">
<list-item id="li0160">
<label></label>
<p id="p0160">Some human-specific immunological reagents cross-react</p>
</list-item>
<list-item id="li0165">
<label></label>
<p id="p0165">Clinical disease similar to humans: translational research (for intra species transmission)</p>
</list-item>
</list>
</td>
<td>
<list list-type="simple" id="l0070">
<list-item id="li0170">
<label></label>
<p id="p0170">Expensive and limited availability</p>
</list-item>
<list-item id="li0175">
<label></label>
<p id="p0175">Complex husbandry requirements (large BSL3 facilities);</p>
</list-item>
<list-item id="li0180">
<label></label>
<p id="p0180">No animal-to-animal transmission studies available</p>
</list-item>
</list>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Abbreviations: BSL3, biosafety level 3; MERS-CoV, Middle East respiratory syndrome; NHP, non-human primates; NS, nasal swabs.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<p id="p0255">Contrary to the mentioned species, both macaques and common marmosets develop clinical disease relatively similar to humans. In that respect, phylogenetically-related species as baboons
<xref rid="bb0290" ref-type="bibr">[58]</xref>
, which live in Africa and Arabic Peninsula, might also play a role in the transmission of the virus. However, little attention has been paid to these species since no sero-epidemiology has been documented. There are important limitations when working with NHP models, namely the complex husbandry requirements that lead to substantially increased costs, some controversy results among different groups. Besides practical considerations, human-specific immunological reagents cross-react with NHP species and are widely available.</p>
</sec>
<sec id="s0040">
<label>5</label>
<title>Conclusion and future steps</title>
<p id="p0260">As summarized in this review, several species of animals are susceptible to experimental MERS-CoV infection; thus, they might act as potential intermediate hosts of the disease. However, the presence of viral RNA and/or specific antibodies against the virus has been only demonstrated in the field in dromedaries and alpacas
<xref rid="bb0205" ref-type="bibr">[41]</xref>
,
<xref rid="bb0255" ref-type="bibr">[51]</xref>
. At the light of recent experimental studies, it seems that the list of potential host targets for MERS-CoV is not closed. MERS surveillance programs should be implemented in endemic areas in animal species for which experimental evidence of susceptibility has been provided and species closely related to them.</p>
<p id="p0265">SARS and MERS outbreaks taught us many lessons, and one of the most important is that, even in the absence of an overt threat, there is the possibility of the re-emergence of a virus or other similar viruses. On the other hand, and since the first case of MERS, continuous new cases have been described in different countries around the world
<xref rid="bb0295" ref-type="bibr">[59]</xref>
,
<xref rid="bb0300" ref-type="bibr">[60]</xref>
,
<xref rid="bb0305" ref-type="bibr">[61]</xref>
,
<xref rid="bb0310" ref-type="bibr">[62]</xref>
. This underlines the importance of the development of animal models closer to the natural host targets. The key role of domestic animals and wildlife in the transmission of MERS-CoV should be further elucidated; meanwhile, countermeasures against deadly coronaviruses must be further explored since the risk of a global outbreak is not negligible. Noteworthy, after more than a decade of SARS and five years of MERS epidemics, there are still no licensed preventive or therapeutic drugs available that could be used in case of an eventual re-emergence of SARS or MERS. This scenario is not the outcome of technical issues, since effective vaccine prototypes against those pathogens are already available
<xref rid="bb0265" ref-type="bibr">[53]</xref>
,
<xref rid="bb0315" ref-type="bibr">[63]</xref>
,
<xref rid="bb0320" ref-type="bibr">[64]</xref>
. In case of MERS-CoV, vaccination of dromedary camels, the main source of zoonotic transmission, might be useful to control the spread of MERS
<xref rid="bb0265" ref-type="bibr">[53]</xref>
. However, when developing a vaccine, besides testing the protection efficacy, researchers need to think about social problems such as the reticence of camel owners to vaccinate their animals. Thus, the development of a dual vaccine able to protect against both, MERS-CoV and camelpox virus (an endemic disease in the Middle East, Africa and Asia) might be an ideal solution
<xref rid="bb0265" ref-type="bibr">[53]</xref>
. Recently, another dual-vaccine for humans and animals against MERS-CoV and rabies virus has been designed
<xref rid="bb0325" ref-type="bibr">[65]</xref>
. Political aspects have also a key role in the release of a vaccine into the market. Unless the requirements and timings for vaccine licensing procedures are facilitated, pharmaceutical companies will unlikely invest in their development taking into account the current market demand. Moreover, fragmentation of intellectual property rights may also adversely affect the development of vaccines to combat those infections
<xref rid="bb0330" ref-type="bibr">[66]</xref>
.</p>
</sec>
<sec id="s0045">
<title>Conflicts of interest</title>
<p id="p0270">None.</p>
</sec>
</body>
<back>
<ref-list id="bi0005">
<title>References</title>
<ref id="bb0005">
<label>1</label>
<element-citation publication-type="journal" id="rf0005">
<person-group person-group-type="author">
<name>
<surname>Rubin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Stokes</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Dunham</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lautner</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Review of institute of medicine and national research council recommendations for one health initiative</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>19</volume>
<issue>12</issue>
<year>2013</year>
<fpage>1913</fpage>
<lpage>1917</lpage>
<pub-id pub-id-type="pmid">24274461</pub-id>
</element-citation>
</ref>
<ref id="bb0010">
<label>2</label>
<element-citation publication-type="journal" id="rf0010">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>N.G.</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Storeygard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Balk</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gittleman</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Global trends in emerging infectious diseases</article-title>
<source>Nature</source>
<volume>451</volume>
<issue>7181</issue>
<year>2008</year>
<fpage>990</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="pmid">18288193</pub-id>
</element-citation>
</ref>
<ref id="bb0015">
<label>3</label>
<element-citation publication-type="journal" id="rf0015">
<person-group person-group-type="author">
<name>
<surname>Morse</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Mazet</surname>
<given-names>J.A.K.</given-names>
</name>
<name>
<surname>Woolhouse</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Parrish</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Carroll</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Karesh</surname>
<given-names>W.B.</given-names>
</name>
</person-group>
<article-title>Prediction and prevention of the next pandemic zoonosis</article-title>
<source>Lancet</source>
<volume>380</volume>
<issue>9857</issue>
<year>2012</year>
<fpage>1956</fpage>
<lpage>1965</lpage>
<pub-id pub-id-type="pmid">23200504</pub-id>
</element-citation>
</ref>
<ref id="bb0020">
<label>4</label>
<element-citation publication-type="journal" id="rf0020">
<person-group person-group-type="author">
<name>
<surname>Mäkelä</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Puhakka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ruuskanen</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Leinonen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Saikku</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kimpimäki</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Viruses and bacteria in the etiology of the common cold</article-title>
<source>J. Clin. Microbiol.</source>
<volume>36</volume>
<issue>2</issue>
<year>1998</year>
<fpage>539</fpage>
<lpage>542</lpage>
<pub-id pub-id-type="pmid">9466772</pub-id>
</element-citation>
</ref>
<ref id="bb0025">
<label>5</label>
<element-citation publication-type="other" id="rf0025">
<person-group person-group-type="author">
<name>
<surname>World Health Organization, WHO</surname>
</name>
</person-group>
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2016_" id="ir0005">http://www.who.int/csr/don/2016_</ext-link>
<year>2014</year>
<comment>(Accessed on December 15, 2016)</comment>
</element-citation>
</ref>
<ref id="bb0030">
<label>6</label>
<element-citation publication-type="journal" id="rf0030">
<person-group person-group-type="author">
<name>
<surname>Bermingham</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chand</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Aarons</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Langrish</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Severe respiratory illness caused by a novel coronavirus, in a patient transferred to United Kingdom from the Middle East, September 2012</article-title>
<source>Euro Surveill.</source>
<volume>17</volume>
<issue>40</issue>
<year>2012</year>
<fpage>20290</fpage>
<pub-id pub-id-type="pmid">23078800</pub-id>
</element-citation>
</ref>
<ref id="bb0035">
<label>7</label>
<element-citation publication-type="other" id="rf0035">
<person-group person-group-type="author">
<name>
<surname>World Health Organization, WHO</surname>
</name>
</person-group>
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/emergencies/mers-cov/en/" id="ir0010">http://www.who.int/emergencies/mers-cov/en/</ext-link>
<year>2016</year>
<comment>(Accessed on December 15, 2016)</comment>
</element-citation>
</ref>
<ref id="bb0040">
<label>8</label>
<element-citation publication-type="other" id="rf0040">
<person-group person-group-type="author">
<name>
<surname>World Health Organization, WHO</surname>
</name>
</person-group>
<ext-link ext-link-type="uri" xlink:href="https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/" id="ir0015">https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/</ext-link>
<year>2014</year>
<comment>(Accessed on December 15, 2016)</comment>
</element-citation>
</ref>
<ref id="bb0045">
<label>9</label>
<element-citation publication-type="journal" id="rf0045">
<person-group person-group-type="author">
<name>
<surname>Paweska</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Sewlall</surname>
<given-names>N.H.</given-names>
</name>
<name>
<surname>Ksiazek</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Blumberg</surname>
<given-names>L.H.</given-names>
</name>
<name>
<surname>Hale</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Lipkin</surname>
<given-names>W.I.</given-names>
</name>
</person-group>
<article-title>Nosocomial outbreak of novel arenavirus infection, southern Africa</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>15</volume>
<issue>10</issue>
<year>2009</year>
<fpage>1598</fpage>
<lpage>1602</lpage>
<pub-id pub-id-type="pmid">19861052</pub-id>
</element-citation>
</ref>
<ref id="bb0050">
<label>10</label>
<element-citation publication-type="journal" id="rf0050">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>X.J.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.L.</given-names>
</name>
</person-group>
<article-title>Fever with thrombocytopenia associated with a novel bunyavirus in China</article-title>
<source>N. Engl. J. Med.</source>
<volume>364</volume>
<issue>16</issue>
<year>2011</year>
<fpage>1523</fpage>
<lpage>1532</lpage>
<pub-id pub-id-type="pmid">21410387</pub-id>
</element-citation>
</ref>
<ref id="bb0055">
<label>11</label>
<element-citation publication-type="journal" id="rf0055">
<person-group person-group-type="author">
<name>
<surname>Safronetz</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Geisbert</surname>
<given-names>T.W.</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Animal models for highly pathogenic emerging viruses</article-title>
<source>Curr. Opin. Virol.</source>
<volume>3</volume>
<issue>2</issue>
<year>2013</year>
<fpage>205</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="pmid">23403208</pub-id>
</element-citation>
</ref>
<ref id="bb0060">
<label>12</label>
<element-citation publication-type="book" id="rf0060">
<person-group person-group-type="author">
<name>
<surname>Food and Drug Administration, FDA</surname>
</name>
</person-group>
<chapter-title>Guidance for industry product development under the animal rule</chapter-title>
<source>US Department of Health and Human Services</source>
<edition>May 2014 ed.</edition>
<year>2014</year>
<publisher-name>FDA</publisher-name>
<publisher-loc>Silver Spring, MD</publisher-loc>
</element-citation>
</ref>
<ref id="bb0065">
<label>13</label>
<element-citation publication-type="journal" id="rf0065">
<person-group person-group-type="author">
<name>
<surname>Plumb</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Babiuk</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mazet</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Olsen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rupprecht</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pastoret</surname>
<given-names>P.P.</given-names>
</name>
</person-group>
<article-title>Vaccination in conservation medicine</article-title>
<source>Rev. Sci. Tech.</source>
<volume>26</volume>
<issue>1</issue>
<year>2007</year>
<fpage>229</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="pmid">17633305</pub-id>
</element-citation>
</ref>
<ref id="bb0070">
<label>14</label>
<element-citation publication-type="journal" id="rf0070">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>L.G.</given-names>
</name>
<name>
<surname>Khare</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lawhon</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Rossetti</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Lewin</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Lipton</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: linking systems biology with vaccine development</article-title>
<source>Vaccine</source>
<volume>29</volume>
<issue>41</issue>
<year>2011</year>
<fpage>7197</fpage>
<lpage>7206</lpage>
<pub-id pub-id-type="pmid">21651944</pub-id>
</element-citation>
</ref>
<ref id="bb0075">
<label>15</label>
<element-citation publication-type="journal" id="rf0075">
<person-group person-group-type="author">
<name>
<surname>Alharbi</surname>
<given-names>N.K.</given-names>
</name>
</person-group>
<article-title>Vaccines against Middle East respiratory syndrome coronavirus for humans and camels</article-title>
<source>Rev. Med. Virol.</source>
<year>2016 Oct 27</year>
<comment>(Epub ahead of print)</comment>
</element-citation>
</ref>
<ref id="bb0080">
<label>16</label>
<element-citation publication-type="journal" id="rf0080">
<person-group person-group-type="author">
<name>
<surname>Lowenthal</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Overview of the CSIRO Australian Animal Health Laboratory</article-title>
<source>J. Infect. Public Health</source>
<volume>9</volume>
<issue>3</issue>
<year>2016 May–Jun</year>
<fpage>236</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="pmid">27118215</pub-id>
</element-citation>
</ref>
<ref id="bb0085">
<label>17</label>
<element-citation publication-type="journal" id="rf0085">
<person-group person-group-type="author">
<name>
<surname>Baseler</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Falzarano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Rosenke</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Munster</surname>
<given-names>V.J.</given-names>
</name>
</person-group>
<article-title>An acute immune response to Middle East respiratory syndrome coronavirus replication contributes to viral pathogenicity</article-title>
<source>Am. J. Pathol.</source>
<volume>186</volume>
<issue>3</issue>
<year>2016</year>
<fpage>630</fpage>
<lpage>638</lpage>
<pub-id pub-id-type="pmid">26724387</pub-id>
</element-citation>
</ref>
<ref id="bb0090">
<label>18</label>
<element-citation publication-type="journal" id="rf0090">
<person-group person-group-type="author">
<name>
<surname>van Doremalen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Munster</surname>
<given-names>V.J.</given-names>
</name>
</person-group>
<article-title>Animal models of Middle East respiratory syndrome coronavirus infection</article-title>
<source>Antivir. Res.</source>
<volume>122</volume>
<year>2015</year>
<fpage>28</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">26192750</pub-id>
</element-citation>
</ref>
<ref id="bb0095">
<label>19</label>
<element-citation publication-type="journal" id="rf0095">
<person-group person-group-type="author">
<name>
<surname>Sutton</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Development of animal models against emerging coronaviruses: from SARS to MERS coronavirus</article-title>
<source>Virology</source>
<volume>479–480</volume>
<year>2015</year>
<fpage>247</fpage>
<lpage>258</lpage>
</element-citation>
</ref>
<ref id="bb0100">
<label>20</label>
<element-citation publication-type="journal" id="rf0100">
<person-group person-group-type="author">
<name>
<surname>Baseler</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>A comparative review of animal models of Middle East respiratory syndrome coronavirus infection</article-title>
<source>Vet. Pathol.</source>
<volume>53</volume>
<issue>3</issue>
<year>2016</year>
<fpage>521</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="pmid">26869154</pub-id>
</element-citation>
</ref>
<ref id="bb0105">
<label>21</label>
<element-citation publication-type="journal" id="rf0105">
<person-group person-group-type="author">
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Falzarano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bushmaker</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Brining</surname>
<given-names>D.L.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<volume>110</volume>
<issue>41</issue>
<year>2013</year>
<fpage>16598</fpage>
<lpage>16603</lpage>
<pub-id pub-id-type="pmid">24062443</pub-id>
</element-citation>
</ref>
<ref id="bb0110">
<label>22</label>
<element-citation publication-type="journal" id="rf0110">
<person-group person-group-type="author">
<name>
<surname>Munster</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Pneumonia from human coronavirus in a macaque model</article-title>
<source>N. Engl. J. Med.</source>
<volume>368</volume>
<issue>16</issue>
<year>2013</year>
<fpage>1560</fpage>
<lpage>1562</lpage>
</element-citation>
</ref>
<ref id="bb0115">
<label>23</label>
<element-citation publication-type="journal" id="rf0115">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus</article-title>
<source>J. Infect. Dis.</source>
<volume>209</volume>
<issue>2</issue>
<year>2014</year>
<fpage>236</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="pmid">24218506</pub-id>
</element-citation>
</ref>
<ref id="bb0120">
<label>24</label>
<element-citation publication-type="journal" id="rf0120">
<person-group person-group-type="author">
<name>
<surname>Falzarano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Okumura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Infection with MERS-CoV causes lethal pneumonia in the common marmoset</article-title>
<source>PLoS Pathog.</source>
<volume>10</volume>
<issue>8</issue>
<year>2014</year>
<fpage>e1004250</fpage>
<pub-id pub-id-type="pmid">25144235</pub-id>
</element-citation>
</ref>
<ref id="bb0125">
<label>25</label>
<element-citation publication-type="journal" id="rf0125">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Dekkers</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Dijkman</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
<source>Nature</source>
<volume>495</volume>
<issue>7440</issue>
<year>2013</year>
<fpage>251</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="bb0130">
<label>26</label>
<element-citation publication-type="journal" id="rf0130">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4</article-title>
<source>Cell Res.</source>
<volume>23</volume>
<issue>8</issue>
<year>2013</year>
<fpage>986</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="pmid">23835475</pub-id>
</element-citation>
</ref>
<ref id="bb0135">
<label>27</label>
<element-citation publication-type="journal" id="rf0135">
<person-group person-group-type="author">
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Prescott</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Baseler</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bushmaker</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lackemeyer</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters</article-title>
<source>PLoS One</source>
<volume>8</volume>
<issue>7</issue>
<year>2013</year>
<fpage>e69127</fpage>
<pub-id pub-id-type="pmid">23844250</pub-id>
</element-citation>
</ref>
<ref id="bb0140">
<label>28</label>
<element-citation publication-type="journal" id="rf0140">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Matthews</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Goicochea</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Frieman</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus</article-title>
<source>J. Gen. Virol.</source>
<volume>95</volume>
<issue>Pt 2</issue>
<year>2014</year>
<fpage>408</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="pmid">24197535</pub-id>
</element-citation>
</ref>
<ref id="bb0145">
<label>29</label>
<element-citation publication-type="journal" id="rf0145">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wohlford-Lenane</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Agnihothramn</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Fett</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Rapid generation of a mouse model for Middle East respiratory syndrome</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<volume>111</volume>
<issue>13</issue>
<year>2014</year>
<fpage>4970</fpage>
<lpage>4975</lpage>
<pub-id pub-id-type="pmid">24599590</pub-id>
</element-citation>
</ref>
<ref id="bb0150">
<label>30</label>
<element-citation publication-type="journal" id="rf0150">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Garron</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Wakamiya</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>T.S.</given-names>
</name>
</person-group>
<article-title>Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease</article-title>
<source>J. Virol.</source>
<volume>89</volume>
<issue>7</issue>
<year>2015</year>
<fpage>3659</fpage>
<lpage>3670</lpage>
<pub-id pub-id-type="pmid">25589660</pub-id>
</element-citation>
</ref>
<ref id="bb0155">
<label>31</label>
<element-citation publication-type="journal" id="rf0155">
<person-group person-group-type="author">
<name>
<surname>Houdebine</surname>
<given-names>L.M.</given-names>
</name>
</person-group>
<article-title>Transgenic animal models in biomedical research</article-title>
<source>Methods Mol. Biol.</source>
<volume>360</volume>
<year>2007</year>
<fpage>163</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="pmid">17172731</pub-id>
</element-citation>
</ref>
<ref id="bb0160">
<label>32</label>
<element-citation publication-type="journal" id="rf0160">
<person-group person-group-type="author">
<name>
<surname>Peck</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Cockrell</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Yount</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Scobey</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Heise</surname>
<given-names>M.T.</given-names>
</name>
</person-group>
<article-title>Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection</article-title>
<source>J. Virol.</source>
<volume>89</volume>
<issue>8</issue>
<year>2015</year>
<fpage>4696</fpage>
<lpage>4699</lpage>
<pub-id pub-id-type="pmid">25653445</pub-id>
</element-citation>
</ref>
<ref id="bb0165">
<label>33</label>
<element-citation publication-type="journal" id="rf0165">
<person-group person-group-type="author">
<name>
<surname>Cockrell</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Yount</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Scobey</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Beall</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>A mouse model for MERS coronavirus-induced acute respiratory distress syndrome</article-title>
<source>Nat Microbiol.</source>
<volume>2</volume>
<year>2016</year>
<fpage>16226</fpage>
<pub-id pub-id-type="pmid">27892925</pub-id>
</element-citation>
</ref>
<ref id="bb0170">
<label>34</label>
<element-citation publication-type="journal" id="rf0170">
<person-group person-group-type="author">
<name>
<surname>Tai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection</article-title>
<source>Virology</source>
<volume>499</volume>
<year>2016</year>
<fpage>375</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="pmid">27750111</pub-id>
</element-citation>
</ref>
<ref id="bb0175">
<label>35</label>
<element-citation publication-type="journal" id="rf0175">
<person-group person-group-type="author">
<name>
<surname>Qiu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection</article-title>
<source>Antivir. Res.</source>
<volume>132</volume>
<year>2016</year>
<fpage>141</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="pmid">27312105</pub-id>
</element-citation>
</ref>
<ref id="bb0180">
<label>36</label>
<element-citation publication-type="journal" id="rf0180">
<person-group person-group-type="author">
<name>
<surname>Pascal</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Mujica</surname>
<given-names>A.O.</given-names>
</name>
<name>
<surname>Kamat</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Badithe</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fairhurst</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<volume>112</volume>
<issue>28</issue>
<year>2015</year>
<fpage>8738</fpage>
<lpage>8743</lpage>
<pub-id pub-id-type="pmid">26124093</pub-id>
</element-citation>
</ref>
<ref id="bb0185">
<label>37</label>
<element-citation publication-type="journal" id="rf0185">
<person-group person-group-type="author">
<name>
<surname>de Benedictis</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Marciano</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Scaravelli</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Priori</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zecchin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Capua</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Alpha and lineage C beta CoV infections in Italian bats</article-title>
<source>Virus Genes</source>
<volume>48</volume>
<issue>2</issue>
<year>2014</year>
<fpage>366</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="pmid">24242847</pub-id>
</element-citation>
</ref>
<ref id="bb0190">
<label>38</label>
<element-citation publication-type="journal" id="rf0190">
<person-group person-group-type="author">
<name>
<surname>Memish</surname>
<given-names>Z.A.</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Olival</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Fagbo</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Kapoor</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Epstein</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in bats, Saudi Arabia</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>19</volume>
<issue>11</issue>
<year>2013</year>
<fpage>1819</fpage>
<lpage>1823</lpage>
<pub-id pub-id-type="pmid">24206838</pub-id>
</element-citation>
</ref>
<ref id="bb0195">
<label>39</label>
<element-citation publication-type="journal" id="rf0195">
<person-group person-group-type="author">
<name>
<surname>Munster</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>Adney</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>van Doremalen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>V.R.</given-names>
</name>
<name>
<surname>Miazgowicz</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Milne-Price</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Replication and shedding of MERS-CoV in Jamaican fruit bats (
<italic>Artibeus jamaicensis</italic>
)</article-title>
<source>Sci. Rep.</source>
<volume>6</volume>
<year>2016</year>
<fpage>21878</fpage>
<pub-id pub-id-type="pmid">26899616</pub-id>
</element-citation>
</ref>
<ref id="bb0200">
<label>40</label>
<element-citation publication-type="journal" id="rf0200">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Jores</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Younan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liljander</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Said</surname>
<given-names>M.Y.</given-names>
</name>
</person-group>
<article-title>Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>20</volume>
<issue>8</issue>
<year>2014</year>
<fpage>1319</fpage>
<lpage>1322</lpage>
<pub-id pub-id-type="pmid">25075637</pub-id>
</element-citation>
</ref>
<ref id="bb0205">
<label>41</label>
<element-citation publication-type="journal" id="rf0205">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Gutierrez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Godeke</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study</article-title>
<source>Lancet Infect. Dis.</source>
<volume>13</volume>
<issue>10</issue>
<year>2013</year>
<fpage>859</fpage>
<lpage>866</lpage>
<pub-id pub-id-type="pmid">23933067</pub-id>
</element-citation>
</ref>
<ref id="bb0210">
<label>42</label>
<element-citation publication-type="journal" id="rf0210">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Al Dhahiry</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Galiano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation</article-title>
<source>Lancet Infect. Dis.</source>
<volume>14</volume>
<issue>2</issue>
<year>2014</year>
<fpage>140</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="pmid">24355866</pub-id>
</element-citation>
</ref>
<ref id="bb0215">
<label>43</label>
<element-citation publication-type="journal" id="rf0215">
<person-group person-group-type="author">
<name>
<surname>Müller</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Al-Masri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Turkestani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ritz</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study</article-title>
<source>Lancet Infect. Dis.</source>
<volume>15</volume>
<issue>5</issue>
<year>2015</year>
<fpage>559</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="pmid">25863564</pub-id>
</element-citation>
</ref>
<ref id="bb0220">
<label>44</label>
<element-citation publication-type="journal" id="rf0220">
<person-group person-group-type="author">
<name>
<surname>Farag</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Mohran</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Stalin Raj</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pas</surname>
<given-names>S.D.</given-names>
</name>
</person-group>
<article-title>High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014</article-title>
<source>Infect. Ecol. Epidemiol.</source>
<volume>5</volume>
<year>2015 Jul 15</year>
<fpage>28305</fpage>
<pub-id pub-id-type="pmid">26183160</pub-id>
</element-citation>
</ref>
<ref id="bb0225">
<label>45</label>
<element-citation publication-type="journal" id="rf0225">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Farag</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Lamers</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Pas</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Voermans</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>20</volume>
<issue>8</issue>
<year>2014 Aug</year>
<fpage>1339</fpage>
<lpage>1342</lpage>
<pub-id pub-id-type="pmid">25075761</pub-id>
</element-citation>
</ref>
<ref id="bb0230">
<label>46</label>
<element-citation publication-type="journal" id="rf0230">
<person-group person-group-type="author">
<name>
<surname>Sabir</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>T.T.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Abo-Aba</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<article-title>Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia</article-title>
<source>Science</source>
<volume>351</volume>
<issue>6268</issue>
<year>2016</year>
<fpage>81</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">26678874</pub-id>
</element-citation>
</ref>
<ref id="bb0235">
<label>47</label>
<element-citation publication-type="journal" id="rf0235">
<person-group person-group-type="author">
<name>
<surname>Adney</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>van Doremalen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>V.R.</given-names>
</name>
<name>
<surname>Bushmaker</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>20</volume>
<issue>12</issue>
<year>2014</year>
<fpage>1999</fpage>
<lpage>2005</lpage>
<pub-id pub-id-type="pmid">25418529</pub-id>
</element-citation>
</ref>
<ref id="bb0240">
<label>48</label>
<element-citation publication-type="journal" id="rf0240">
<person-group person-group-type="author">
<name>
<surname>Adney</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Bielefeldt-Ohmann</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hartwig</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>22</volume>
<issue>6</issue>
<year>2016</year>
<fpage>1031</fpage>
<lpage>1037</lpage>
<pub-id pub-id-type="pmid">27070385</pub-id>
</element-citation>
</ref>
<ref id="bb0245">
<label>49</label>
<element-citation publication-type="journal" id="rf0245">
<person-group person-group-type="author">
<name>
<surname>Crameri</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Durr</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Foord</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Riddell</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>22</volume>
<issue>6</issue>
<year>2016</year>
<fpage>1071</fpage>
<lpage>1074</lpage>
<pub-id pub-id-type="pmid">27070733</pub-id>
</element-citation>
</ref>
<ref id="bb0250">
<label>50</label>
<element-citation publication-type="journal" id="rf0250">
<person-group person-group-type="author">
<name>
<surname>Vergara-Alert</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>van den Brand</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Widagdo</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Muñoz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>15</volume>
<year>2017 Feb</year>
<fpage>23(2)</fpage>
<comment>(Epub ahead of print)</comment>
</element-citation>
</ref>
<ref id="bb0255">
<label>51</label>
<element-citation publication-type="journal" id="rf0255">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Schilp</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>De Bruin</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kohl</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Farag</surname>
<given-names>E.A.</given-names>
</name>
</person-group>
<article-title>MERS-CoV infection of alpaca in a region where MERS-CoV is endemic</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>22</volume>
<issue>6</issue>
<year>2016</year>
<fpage>1129</fpage>
<lpage>1131</lpage>
<pub-id pub-id-type="pmid">27070501</pub-id>
</element-citation>
</ref>
<ref id="bb0260">
<label>52</label>
<element-citation publication-type="journal" id="rf0260">
<person-group person-group-type="author">
<name>
<surname>Mohd</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Al-Tawfiq</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Memish</surname>
<given-names>Z.A.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir</article-title>
<source>Virol. J.</source>
<volume>13</volume>
<year>2016</year>
<fpage>87</fpage>
<pub-id pub-id-type="pmid">27255185</pub-id>
</element-citation>
</ref>
<ref id="bb0265">
<label>53</label>
<element-citation publication-type="journal" id="rf0265">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>van den Brand</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Volz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wohlsein</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>S.L.</given-names>
</name>
</person-group>
<article-title>An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels</article-title>
<source>Science</source>
<volume>351</volume>
<issue>6268</issue>
<year>2016</year>
<fpage>77</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">26678878</pub-id>
</element-citation>
</ref>
<ref id="bb0270">
<label>54</label>
<element-citation publication-type="journal" id="rf0270">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>van den Brand</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Provacia</surname>
<given-names>L.B.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Stittelaar</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Getu</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits</article-title>
<source>J. Virol.</source>
<volume>89</volume>
<issue>11</issue>
<year>2015</year>
<fpage>6131</fpage>
<lpage>6135</lpage>
<pub-id pub-id-type="pmid">25810539</pub-id>
</element-citation>
</ref>
<ref id="bb0275">
<label>55</label>
<element-citation publication-type="journal" id="rf0275">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yeung</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset</article-title>
<source>J. Infect. Dis.</source>
<volume>212</volume>
<issue>12</issue>
<year>2015</year>
<fpage>1904</fpage>
<lpage>1913</lpage>
<pub-id pub-id-type="pmid">26198719</pub-id>
</element-citation>
</ref>
<ref id="bb0280">
<label>56</label>
<element-citation publication-type="journal" id="rf0280">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Via</surname>
<given-names>L.E.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Cornish</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Yellayi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huzella</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease</article-title>
<source>Virology</source>
<volume>485</volume>
<year>2015</year>
<fpage>422</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="pmid">26342468</pub-id>
</element-citation>
</ref>
<ref id="bb0285">
<label>57</label>
<element-citation publication-type="journal" id="rf0285">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Heirman</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Parish</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Barrington</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Loftis</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Flow cytometric analysis of an immunodeficiency disorder affecting juvenile llamas</article-title>
<source>Vet. Immunol. Immunopathol.</source>
<volume>74</volume>
<issue>1–2</issue>
<year>2000</year>
<fpage>103</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="pmid">10760393</pub-id>
</element-citation>
</ref>
<ref id="bb0290">
<label>58</label>
<element-citation publication-type="journal" id="rf0290">
<person-group person-group-type="author">
<name>
<surname>Eichler</surname>
<given-names>E.E.</given-names>
</name>
<name>
<surname>DeJong</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<article-title>Biomedical applications and studies of molecular evolution: a proposal for a primate genomic library resource</article-title>
<source>Genome Res.</source>
<volume>12</volume>
<issue>5</issue>
<year>2002</year>
<fpage>673</fpage>
<lpage>678</lpage>
<pub-id pub-id-type="pmid">11997334</pub-id>
</element-citation>
</ref>
<ref id="bb0295">
<label>59</label>
<element-citation publication-type="journal" id="rf0295">
<person-group person-group-type="author">
<name>
<surname>Cowling</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.T.</given-names>
</name>
</person-group>
<article-title>Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015</article-title>
<source>Euro Surveill.</source>
<volume>20</volume>
<issue>25</issue>
<year>2015</year>
<fpage>7</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">26132767</pub-id>
</element-citation>
</ref>
<ref id="bb0300">
<label>60</label>
<element-citation publication-type="journal" id="rf0300">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Imported case of MERS-CoV infection identified in China, May 2015: detection and lesson learned</article-title>
<source>Euro Surveill.</source>
<volume>20</volume>
<issue>24</issue>
<year>2015</year>
<comment>(pii: 21158)</comment>
</element-citation>
</ref>
<ref id="bb0305">
<label>61</label>
<element-citation publication-type="journal" id="rf0305">
<person-group person-group-type="author">
<name>
<surname>Korean Society of Infectious Diseases</surname>
</name>
<name>
<surname>Korean Society for Healthcare-associated Infection Control and Prevention</surname>
</name>
</person-group>
<article-title>The Same Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) yet Different Outbreak Patterns and Public Health Impacts on the Far East Expert Opinion from the Rapid Response Team of the Republic of Korea</article-title>
<source>Infect. Chemother.</source>
<volume>47</volume>
<issue>4</issue>
<year>2015</year>
<fpage>247</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">26788408</pub-id>
</element-citation>
</ref>
<ref id="bb0310">
<label>62</label>
<element-citation publication-type="journal" id="rf0310">
<person-group person-group-type="author">
<name>
<surname>Al-Tawfiq</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Zumla</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Memish</surname>
<given-names>Z.A.</given-names>
</name>
</person-group>
<article-title>Coronaviruses: severe acute respiratory syndrome coronavirus and Middle East respiratorysyndrome coronavirus in travelers</article-title>
<source>Curr. Opin. Infect. Dis.</source>
<volume>27</volume>
<issue>5</issue>
<year>2014</year>
<fpage>411</fpage>
<lpage>417</lpage>
<pub-id pub-id-type="pmid">25033169</pub-id>
</element-citation>
</ref>
<ref id="bb0315">
<label>63</label>
<element-citation publication-type="journal" id="rf0315">
<person-group person-group-type="author">
<name>
<surname>Roper</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Rehm</surname>
<given-names>K.E.</given-names>
</name>
</person-group>
<article-title>SARS vaccines: where are we?</article-title>
<source>Expert Rev. Vaccines</source>
<volume>8</volume>
<issue>7</issue>
<year>2009</year>
<fpage>887</fpage>
<lpage>898</lpage>
<pub-id pub-id-type="pmid">19538115</pub-id>
</element-citation>
</ref>
<ref id="bb0320">
<label>64</label>
<element-citation publication-type="journal" id="rf0320">
<person-group person-group-type="author">
<name>
<surname>Honda-Okubo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Barnard</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ong</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology</article-title>
<source>J. Virol.</source>
<volume>89</volume>
<issue>6</issue>
<year>2015</year>
<fpage>2995</fpage>
<lpage>3007</lpage>
<pub-id pub-id-type="pmid">25520500</pub-id>
</element-citation>
</ref>
<ref id="bb0325">
<label>65</label>
<element-citation publication-type="journal" id="rf0325">
<person-group person-group-type="author">
<name>
<surname>Wirblich</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Kurup</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Bernbaum</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Jahrling</surname>
<given-names>P.B.</given-names>
</name>
</person-group>
<article-title>One-health: a safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus</article-title>
<source>J. Virol.</source>
<volume>91</volume>
<issue>2</issue>
<year>2017 Jan 3</year>
<comment>(pii: e02040-16)</comment>
</element-citation>
</ref>
<ref id="bb0330">
<label>66</label>
<element-citation publication-type="journal" id="rf0330">
<person-group person-group-type="author">
<name>
<surname>Simon</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Claassen</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Correa</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D.</given-names>
</name>
</person-group>
<article-title>Managing severe acute respiratory syndrome (SARS) intellectual property rights: the possible role of patent pooling</article-title>
<source>Bull. World Health Organ.</source>
<volume>83</volume>
<issue>9</issue>
<year>2005</year>
<fpage>707</fpage>
<lpage>710</lpage>
<pub-id pub-id-type="pmid">16211163</pub-id>
</element-citation>
</ref>
</ref-list>
<ack id="ac0005">
<title>Acknowledgements</title>
<p>This review work was performed as part of the Zoonotic Anticipation and Preparedness Initiative (ZAPI project) [
<funding-source id="gts0005">Innovative Medicines Initiative</funding-source>
(IMI) grant 115760] with assistance and financial support from
<funding-source id="gts0010">IMI</funding-source>
and the
<funding-source id="gts0015">European Commission</funding-source>
and contributions from EFPIA partners. The funding from
<funding-source id="gts0020">CERCA Programme/Generalitat de Catalunya</funding-source>
to
<funding-source id="gts0025">IRTA</funding-source>
is also acknowledged.</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001872 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001872 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5454147
   |texte=   Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28616501" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021