Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0018280 ( Pmc/Corpus ); précédent : 0018279; suivant : 0018281 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The receptor binding domain of MERS-CoV: The dawn of vaccine and treatment development</title>
<author>
<name sortKey="Zhou, Nan" sort="Zhou, Nan" uniqKey="Zhou N" first="Nan" last="Zhou">Nan Zhou</name>
</author>
<author>
<name sortKey="Zhang, Yun" sort="Zhang, Yun" uniqKey="Zhang Y" first="Yun" last="Zhang">Yun Zhang</name>
</author>
<author>
<name sortKey="Zhang, Jin Chun" sort="Zhang, Jin Chun" uniqKey="Zhang J" first="Jin-Chun" last="Zhang">Jin-Chun Zhang</name>
</author>
<author>
<name sortKey="Feng, Ling" sort="Feng, Ling" uniqKey="Feng L" first="Ling" last="Feng">Ling Feng</name>
</author>
<author>
<name sortKey="Bao, Jin Ku" sort="Bao, Jin Ku" uniqKey="Bao J" first="Jin-Ku" last="Bao">Jin-Ku Bao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24342026</idno>
<idno type="pmc">7127315</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127315</idno>
<idno type="RBID">PMC:7127315</idno>
<idno type="doi">10.1016/j.jfma.2013.11.006</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001828</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001828</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The receptor binding domain of MERS-CoV: The dawn of vaccine and treatment development</title>
<author>
<name sortKey="Zhou, Nan" sort="Zhou, Nan" uniqKey="Zhou N" first="Nan" last="Zhou">Nan Zhou</name>
</author>
<author>
<name sortKey="Zhang, Yun" sort="Zhang, Yun" uniqKey="Zhang Y" first="Yun" last="Zhang">Yun Zhang</name>
</author>
<author>
<name sortKey="Zhang, Jin Chun" sort="Zhang, Jin Chun" uniqKey="Zhang J" first="Jin-Chun" last="Zhang">Jin-Chun Zhang</name>
</author>
<author>
<name sortKey="Feng, Ling" sort="Feng, Ling" uniqKey="Feng L" first="Ling" last="Feng">Ling Feng</name>
</author>
<author>
<name sortKey="Bao, Jin Ku" sort="Bao, Jin Ku" uniqKey="Bao J" first="Jin-Ku" last="Bao">Jin-Ku Bao</name>
</author>
</analytic>
<series>
<title level="j">Journal of the Formosan Medical Association</title>
<idno type="ISSN">0929-6646</idno>
<idno type="eISSN">0929-6646</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is becoming another “SARS-like” threat to the world. It has an extremely high death rate (∼50%) as there is no vaccine or efficient therapeutics. The identification of the structures of both the MERS-CoV receptor binding domain (RBD) and its complex with dipeptidyl peptidase 4 (DPP4), raises the hope of alleviating this currently severe situation. In this review, we examined the molecular basis of the RBD-receptor interaction to outline why/how could we use MERS-CoV RBD to develop vaccines and antiviral drugs.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, G" uniqKey="Khan G">G. Khan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, J F W" uniqKey="Chan J">J.F.-W. Chan</name>
</author>
<author>
<name sortKey="Lau, S K P" uniqKey="Lau S">S.K.-P. Lau</name>
</author>
<author>
<name sortKey="Woo, P C Y" uniqKey="Woo P">P.C.-Y. Woo</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guery, B" uniqKey="Guery B">B. Guery</name>
</author>
<author>
<name sortKey="Poissy, J" uniqKey="Poissy J">J. Poissy</name>
</author>
<author>
<name sortKey="El Mansouf, L" uniqKey="El Mansouf L">L. el Mansouf</name>
</author>
<author>
<name sortKey="Sejourne, C" uniqKey="Sejourne C">C. Séjourné</name>
</author>
<author>
<name sortKey="Ettahar, N" uniqKey="Ettahar N">N. Ettahar</name>
</author>
<author>
<name sortKey="Lemaire, X" uniqKey="Lemaire X">X. Lemaire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Z A" uniqKey="Memish Z">Z.A. Memish</name>
</author>
<author>
<name sortKey="Zumla, A I" uniqKey="Zumla A">A.I. Zumla</name>
</author>
<author>
<name sortKey="Al Hakeem, R F" uniqKey="Al Hakeem R">R.F. Al-Hakeem</name>
</author>
<author>
<name sortKey="Al Rabeeah, A A" uniqKey="Al Rabeeah A">A.A. Al-Rabeeah</name>
</author>
<author>
<name sortKey="Stephens, G M" uniqKey="Stephens G">G.M. Stephens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A. Assiri</name>
</author>
<author>
<name sortKey="Mcgeer, A" uniqKey="Mcgeer A">A. McGeer</name>
</author>
<author>
<name sortKey="Perl, T M" uniqKey="Perl T">T.M. Perl</name>
</author>
<author>
<name sortKey="Price, C S" uniqKey="Price C">C.S. Price</name>
</author>
<author>
<name sortKey="Al Rabeeah, A A" uniqKey="Al Rabeeah A">A.A. Al Rabeeah</name>
</author>
<author>
<name sortKey="Cummings, D A T" uniqKey="Cummings D">D.A.T. Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woo, P C" uniqKey="Woo P">P.C. Woo</name>
</author>
<author>
<name sortKey="Lau, S K" uniqKey="Lau S">S.K. Lau</name>
</author>
<author>
<name sortKey="Lam, C S" uniqKey="Lam C">C.S. Lam</name>
</author>
<author>
<name sortKey="Lau, C C" uniqKey="Lau C">C.C. Lau</name>
</author>
<author>
<name sortKey="Tsang, A K" uniqKey="Tsang A">A.K. Tsang</name>
</author>
<author>
<name sortKey="Lau, J H" uniqKey="Lau J">J.H. Lau</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woo, P C" uniqKey="Woo P">P.C. Woo</name>
</author>
<author>
<name sortKey="Lau, S K" uniqKey="Lau S">S.K. Lau</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Yuen, K Y" uniqKey="Yuen K">K.-Y. Yuen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H. Mou</name>
</author>
<author>
<name sortKey="Smits, S L" uniqKey="Smits S">S.L. Smits</name>
</author>
<author>
<name sortKey="Dekkers, D H" uniqKey="Dekkers D">D.H. Dekkers</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M.A. Müller</name>
</author>
<author>
<name sortKey="Dijkman, R" uniqKey="Dijkman R">R. Dijkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Debnath, A K" uniqKey="Debnath A">A.K. Debnath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J. Qi</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y. He</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Zheng, B J" uniqKey="Zheng B">B.-J. Zheng</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Rajashankar, K R" uniqKey="Rajashankar K">K.R. Rajashankar</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Agnihothram, S S" uniqKey="Agnihothram S">S.S. Agnihothram</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Lin, Y L" uniqKey="Lin Y">Y.-L. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H. Mou</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Van Kuppeveld, F J" uniqKey="Van Kuppeveld F">F.J. van Kuppeveld</name>
</author>
<author>
<name sortKey="Rottier, P J" uniqKey="Rottier P">P.J. Rottier</name>
</author>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Bosch, B J" uniqKey="Bosch B">B.J. Bosch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G. Zhao</name>
</author>
<author>
<name sortKey="Kou, Z" uniqKey="Kou Z">Z. Kou</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C. Ma</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S. Sun</name>
</author>
<author>
<name sortKey="Poon, V K" uniqKey="Poon V">V.K. Poon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L. Jiang</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Tong, P" uniqKey="Tong P">P. Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stivala, A" uniqKey="Stivala A">A. Stivala</name>
</author>
<author>
<name sortKey="Wybrow, M" uniqKey="Wybrow M">M. Wybrow</name>
</author>
<author>
<name sortKey="Wirth, A" uniqKey="Wirth A">A. Wirth</name>
</author>
<author>
<name sortKey="Whisstock, J C" uniqKey="Whisstock J">J.C. Whisstock</name>
</author>
<author>
<name sortKey="Stuckey, P J" uniqKey="Stuckey P">P.J. Stuckey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorrell, M" uniqKey="Gorrell M">M. Gorrell</name>
</author>
<author>
<name sortKey="Gysbers, V" uniqKey="Gysbers V">V. Gysbers</name>
</author>
<author>
<name sortKey="Mccaughan, G" uniqKey="Mccaughan G">G. McCaughan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boonacker, E" uniqKey="Boonacker E">E. Boonacker</name>
</author>
<author>
<name sortKey="Van Noorden, C J" uniqKey="Van Noorden C">C.J. Van Noorden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lambeir, A M" uniqKey="Lambeir A">A.-M. Lambeir</name>
</author>
<author>
<name sortKey="Durinx, C" uniqKey="Durinx C">C. Durinx</name>
</author>
<author>
<name sortKey="Scharpe, S" uniqKey="Scharpe S">S. Scharpé</name>
</author>
<author>
<name sortKey="De Meester, I" uniqKey="De Meester I">I. De Meester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Engel, M" uniqKey="Engel M">M. Engel</name>
</author>
<author>
<name sortKey="Hoffmann, T" uniqKey="Hoffmann T">T. Hoffmann</name>
</author>
<author>
<name sortKey="Wagner, L" uniqKey="Wagner L">L. Wagner</name>
</author>
<author>
<name sortKey="Wermann, M" uniqKey="Wermann M">M. Wermann</name>
</author>
<author>
<name sortKey="Heiser, U" uniqKey="Heiser U">U. Heiser</name>
</author>
<author>
<name sortKey="Kiefersauer, R" uniqKey="Kiefersauer R">R. Kiefersauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rasmussen, H B" uniqKey="Rasmussen H">H.B. Rasmussen</name>
</author>
<author>
<name sortKey="Branner, S" uniqKey="Branner S">S. Branner</name>
</author>
<author>
<name sortKey="Wiberg, F C" uniqKey="Wiberg F">F.C. Wiberg</name>
</author>
<author>
<name sortKey="Wagtmann, N" uniqKey="Wagtmann N">N. Wagtmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bosch, B J" uniqKey="Bosch B">B.J. Bosch</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y. He</name>
</author>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q. Zhu</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irwin, J J" uniqKey="Irwin J">J.J. Irwin</name>
</author>
<author>
<name sortKey="Sterling, T" uniqKey="Sterling T">T. Sterling</name>
</author>
<author>
<name sortKey="Mysinger, M M" uniqKey="Mysinger M">M.M. Mysinger</name>
</author>
<author>
<name sortKey="Bolstad, E S" uniqKey="Bolstad E">E.S. Bolstad</name>
</author>
<author>
<name sortKey="Coleman, R G" uniqKey="Coleman R">R.G. Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Xiao, J" uniqKey="Xiao J">J. Xiao</name>
</author>
<author>
<name sortKey="Suzek, T O" uniqKey="Suzek T">T.O. Suzek</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Bryant, S H" uniqKey="Bryant S">S.H. Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knox, C" uniqKey="Knox C">C. Knox</name>
</author>
<author>
<name sortKey="Law, V" uniqKey="Law V">V. Law</name>
</author>
<author>
<name sortKey="Jewison, T" uniqKey="Jewison T">T. Jewison</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Ly, S" uniqKey="Ly S">S. Ly</name>
</author>
<author>
<name sortKey="Frolkis, A" uniqKey="Frolkis A">A. Frolkis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weisel, M" uniqKey="Weisel M">M. Weisel</name>
</author>
<author>
<name sortKey="Proschak, E" uniqKey="Proschak E">E. Proschak</name>
</author>
<author>
<name sortKey="Schneider, G" uniqKey="Schneider G">G. Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennet, N" uniqKey="Bennet N">N. Bennet</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Formos Med Assoc</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Formos. Med. Assoc</journal-id>
<journal-title-group>
<journal-title>Journal of the Formosan Medical Association</journal-title>
</journal-title-group>
<issn pub-type="ppub">0929-6646</issn>
<issn pub-type="epub">0929-6646</issn>
<publisher>
<publisher-name>Published by Elsevier (Singapore) Pte Ltd.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24342026</article-id>
<article-id pub-id-type="pmc">7127315</article-id>
<article-id pub-id-type="publisher-id">S0929-6646(13)00402-6</article-id>
<article-id pub-id-type="doi">10.1016/j.jfma.2013.11.006</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The receptor binding domain of MERS-CoV: The dawn of vaccine and treatment development</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au1">
<name>
<surname>Zhou</surname>
<given-names>Nan</given-names>
</name>
<xref rid="fn1" ref-type="fn">a</xref>
</contrib>
<contrib contrib-type="author" id="au2">
<name>
<surname>Zhang</surname>
<given-names>Yun</given-names>
</name>
<xref rid="fn1" ref-type="fn">a</xref>
</contrib>
<contrib contrib-type="author" id="au3">
<name>
<surname>Zhang</surname>
<given-names>Jin-Chun</given-names>
</name>
</contrib>
<contrib contrib-type="author" id="au4">
<name>
<surname>Feng</surname>
<given-names>Ling</given-names>
</name>
</contrib>
<contrib contrib-type="author" id="au5">
<name>
<surname>Bao</surname>
<given-names>Jin-Ku</given-names>
</name>
<email>baojinku@scu.edu.cn</email>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="aff1">School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author. No. 29, Wangjiang Road, School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China.
<email>baojinku@scu.edu.cn</email>
</corresp>
<fn id="fn1">
<label>a</label>
<p id="ntpara0015">These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>12</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>3</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>12</month>
<year>2013</year>
</pub-date>
<volume>113</volume>
<issue>3</issue>
<fpage>143</fpage>
<lpage>147</lpage>
<history>
<date date-type="received">
<day>15</day>
<month>9</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>20</day>
<month>10</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>11</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2013 Published by Elsevier (Singapore) Pte Ltd.</copyright-statement>
<copyright-year>2013</copyright-year>
<copyright-holder></copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="abs0010">
<p>The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is becoming another “SARS-like” threat to the world. It has an extremely high death rate (∼50%) as there is no vaccine or efficient therapeutics. The identification of the structures of both the MERS-CoV receptor binding domain (RBD) and its complex with dipeptidyl peptidase 4 (DPP4), raises the hope of alleviating this currently severe situation. In this review, we examined the molecular basis of the RBD-receptor interaction to outline why/how could we use MERS-CoV RBD to develop vaccines and antiviral drugs.</p>
</abstract>
<kwd-group id="kwrds0010">
<title>Keywords</title>
<kwd>coronavirus</kwd>
<kwd>drug design</kwd>
<kwd>Middle East</kwd>
<kwd>vaccines</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Introduction</title>
<p id="p0010">On 20 September 2012, a novel coronavirus isolated from a 60-year-old Saudi man with acute pneumonia and acute renal failure was reported.
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
In May 2013, the WHO adopted the virus name Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), which was defined by the Coronavirus Study Group of the International Committee on Taxonomy of Viruses.
<xref rid="bib2" ref-type="bibr">
<sup>2</sup>
</xref>
As of 7 September 2013, the WHO has been notified of 114 laboratory-confirmed cases in the Middle East [Jordan, Saudi Arabia (KSA), the United Arab Emirates (UAE), and Qatar], Europe [France, Germany, United Kingdom (UK) and Italy], and North Africa (Tunisia), with 54 deaths.
<xref rid="bib3" ref-type="bibr">
<sup>3</sup>
</xref>
</p>
<p id="p0015">The world is facing a new challenge posed by a severe acute respiratory syndrome (SARS)-like infections in humans caused by MERS-CoV. Its main clinical manifestations in patients are pneumonia (or respiratory) failure and acute renal failure.
<xref rid="bib4" ref-type="bibr">
<sup>4</sup>
</xref>
The short-lived but alarming epidemic SARS-CoV killed nearly 10% of approximately 8000 cases in the 2002–2003 outbreak.
<xref rid="bib5" ref-type="bibr">
<sup>5</sup>
</xref>
The data so far indicate that MERS-CoV possesses an unusually high crude mortality rate of approximately 50%, implying a big threat to people who are infected. Clusters of cases including a UK family, and hospitals in KSA, France and UAE show epidemiological evidence of human-to-human transmission. Indeed, existing reports indicate person-to-person transmission occurs, raising significant concern on the possible emergence of a global epidemic in the near future.
<xref rid="bib6" ref-type="bibr">6</xref>
,
<xref rid="bib7" ref-type="bibr">7</xref>
,
<xref rid="bib8" ref-type="bibr">8</xref>
It is therefore of utmost importance to pay worldwide attention to find antiviral drugs and effective vaccines to control its high death rate and spread.</p>
<p id="p0020">Coronaviruses are a large family of enveloped, single-stranded RNA viruses that infect a number of different host species, including humans. In people, coronaviruses can cause illnesses ranging in severity from the common cold to SARS. Coronaviruses can be categorized into four genera,
<italic>Alphacoronavirus</italic>
,
<italic>Betacoronavirus</italic>
,
<italic>Gammacoronavirus</italic>
, and
<italic>Deltacoronavirus</italic>
.
<xref rid="bib9" ref-type="bibr">9</xref>
,
<xref rid="bib10" ref-type="bibr">10</xref>
The genus
<italic>Betacoronavirus</italic>
has four lineages: A, B, C, and D.
<xref rid="bib11" ref-type="bibr">
<sup>11</sup>
</xref>
MERS-CoV belongs to lineage C and is the first lineage C
<italic>Betacoronavirus</italic>
known to infect humans.
<xref rid="bib12" ref-type="bibr">
<sup>12</sup>
</xref>
</p>
<p id="p0025">Coronaviruses infect animals and humans. The spike (S) entry protein binds to a cell surface receptor which primarily determines their tropism. Similar to other coronaviruses, MERS-CoV utilizes its large surface S protein to interact with and enter the target cell.
<xref rid="bib13" ref-type="bibr">13</xref>
,
<xref rid="bib14" ref-type="bibr">14</xref>
Raj et al
<xref rid="bib13" ref-type="bibr">
<sup>13</sup>
</xref>
have identified that dipeptidyl peptidase 4 (DPP4; also known as CD26) is its functional receptor. MERS-CoV binds to DPP4 via the S protein and releases the RNA genome into the target cell.
<xref rid="bib2" ref-type="bibr">
<sup>2</sup>
</xref>
The MERS-CoV S protein is a type-I membrane glycoprotein and contains S1 and S2 subunits.
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
The S1 domain determines cellular tropism and interacts with the target cell, while the S2 domain mediates membrane fusion.
<xref rid="bib13" ref-type="bibr">13</xref>
,
<xref rid="bib16" ref-type="bibr">16</xref>
According to recent studies, the MERS-CoV receptor binding domain (RBD) is mapped to the S1 region.
<xref rid="bib17" ref-type="bibr">17</xref>
,
<xref rid="bib18" ref-type="bibr">18</xref>
MERS-CoV RBD binds to the receptor and induces significant neutralizing antibody responses, indicating that it can be used as a candidate target for the development of vaccines and antiviral drugs.
<xref rid="bib19" ref-type="bibr">
<sup>19</sup>
</xref>
Herein, we review recent studies on MERS-CoV to make suggestions on antiviral vaccine and drug development.</p>
</sec>
<sec id="sec2">
<title>Structure of MERS-CoV RBD</title>
<p id="p0030">Lu et al
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
and other research teams have identified the crystal structure of MERS-CoV RBD after the discovery of its receptor.
<xref rid="bib17" ref-type="bibr">17</xref>
,
<xref rid="bib20" ref-type="bibr">20</xref>
Structural topology considers a sequence of secondary structure elements making protein structure easy to interpret by laying out the 3D structural information in two dimensions in a manner that makes the structure clear. Therefore we used Pro-origami to automatically generate the schematic representation of the MERS-CoV RBD topology.
<xref rid="bib21" ref-type="bibr">
<sup>21</sup>
</xref>
The MERS-CoV RBD has a core and an external subdomain (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
A and B). The core subdomain is a five-stranded antiparallel β sheet (β1, β3, β4, β5, and β10) decorated by the connecting helices (α1–4 and η1, 2) and two small β-strands (β2 and β11) (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
B). Three disulfide bonds stabilize the fold by connecting C383 to C407, C425 to C478, and C437 to C585 (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
B). The external receptor binding subdomain reveals a four-stranded antiparallel β sheet with three large strands (β6, β8, and β9) and one small strand (β7) between strands β5 and β10 of the core domain (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
B). The β5/6, β7/8 and β9/10 intervening loops touch the core subdomain and anchor the external to the core (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
B). There is a long loop containing η3 crosses perpendicular to the β sheet connecting β7 and β8 strands, and a disulfide bond between C503 and C526 links the η3 helix to strand β6 (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
B).
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Structure of MERS-CoV RBD (PDB:
<ext-link ext-link-type="uri" xlink:href="pdb:4KQZ" id="intref0025">4KQZ</ext-link>
). (A) A cartoon illustration of the structure of MERS-CoV RBD. The core subdomain is shown in yellow and the external subdomain is shown in green. (B) A schematic representation of MERS-CoV RBD topology. The N and C termini are labeled. Arrows denote β strands and cylinders denote α helices. Purple sticks represent the disulfide bonds. Connected residues are also labeled.</p>
</caption>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec3">
<title>Mechanism of MERS-CoV binding to DPP4</title>
<p id="p0035">Multifunctional DPP4 plays a major role in glucose metabolism, T-cell activation, chemotaxis modulation, cell adhesion, and apoptosis.
<xref rid="bib22" ref-type="bibr">22</xref>
,
<xref rid="bib23" ref-type="bibr">23</xref>
In humans, it is primarily expressed on the epithelial cells in the lungs, liver, small intestine, kidney, and prostate, and on activated leukocytes, while it also occurs in a soluble form in the circulation.
<xref rid="bib23" ref-type="bibr">23</xref>
,
<xref rid="bib24" ref-type="bibr">24</xref>
The structure of DPP4, as shown in previous studies, is composed of an N-terminal eight-bladed β-propeller domain (S39 to D496) and a C-terminal α/β-hydrolase domain (N497 to P766).
<xref rid="bib25" ref-type="bibr">25</xref>
,
<xref rid="bib26" ref-type="bibr">26</xref>
The β-propeller domain contains eight blades, each made up of four antiparallel β-strands. The receptor-binding subdomain of MERS-CoV RBD binds to the DPP4 β-propeller, contacting blades four and five and a small bulged helix in the blade-linker.
<xref rid="bib15" ref-type="bibr">15</xref>
,
<xref rid="bib20" ref-type="bibr">20</xref>
Structural analysis and mutational analysis by Lu et al
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
and Wang et al
<xref rid="bib20" ref-type="bibr">
<sup>20</sup>
</xref>
have identified Y499, L506, W533, and E513 in the RBD to be critical for receptor binding and viral entry, and mutations of these significantly abrogate its interaction with DPP4.</p>
</sec>
<sec id="sec4">
<title>MERS-CoV RBD-based vaccine design</title>
<p id="p0040">One reason for the exceptionally high crude mortality rate of nearly 50% in MERS-CoV infection is the lack of vaccines. Therefore, it is necessary to develop efficient and safe vaccines to control MERS quickly. MERS-CoV infects a wide variety of host species whereas coronaviruses generally tend to have a narrow host tropism.
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
DPP4 sequence alignment demonstrates that its orthologs are highly conserved for MERS-CoV acquiring cross-species transmissibility by binding to an evolutionarily conserved receptor.
<xref rid="bib27" ref-type="bibr">
<sup>27</sup>
</xref>
Minor mutations within the RBD domain can disturb the lock-and-key interaction of the RBD-receptor binding interface and then places a barrier for cross-species transmission.</p>
<p id="p0045">The roles of MERS-CoV RBD in receptor binding indicate that vaccines based on it could induce antibodies to block virus binding or infection. Among structural proteins of MERS-CoV, S protein is known to be the main antigenic component to induce significant neutralizing antibody responses up to now.
<xref rid="bib19" ref-type="bibr">
<sup>19</sup>
</xref>
Du et al
<xref rid="bib19" ref-type="bibr">
<sup>19</sup>
</xref>
found that MERS-CoV RBD binds to the receptor and induces significant neutralizing antibody responses. Mou et al
<xref rid="bib18" ref-type="bibr">
<sup>18</sup>
</xref>
revealed that MERS-CoV RBD can efficiently elicit neutralizing antibodies. Besides, previous studies have shown that the related RBD of SARS-CoV strongly reacts with antisera from patients with SARS and the depletion of the RBD-specific antibodies results in significant elimination of the neutralizing activity.
<xref rid="bib28" ref-type="bibr">
<sup>28</sup>
</xref>
Lu et al
<xref rid="bib2" ref-type="bibr">
<sup>2</sup>
</xref>
also proposed that SARS vaccines based on SARS-CoV RBD are more effective and safer than vaccine candidates based on the inactivated virus, DNA or viral vectors. In addition, Zhu et al
<xref rid="bib29" ref-type="bibr">
<sup>29</sup>
</xref>
even proposed to design an RBD-based vaccine against MERS-CoV following an experimental path the same as that of the RBD-based SARS vaccine. Therefore, we strongly believe that MERS-CoV RBD is an important candidate target for developing MERS vaccines.</p>
</sec>
<sec id="sec5">
<title>MERS-CoV RBD-based drug design</title>
<p id="p0050">Up to now, no effective antiviral drugs against MERS-CoV have been discovered, which is another factor contributing to the high death rate. Fortunately, the structure of MERS-CoV RBD and the mechanism of MERS-CoV binding to its cell surface receptor have been revealed. They are very important information for computer-aided drug design, which is a promising approach to finding novel drugs for MERS. With that, virtual screening (VS) and structure-based drug design (SBDD) can be implemented to find candidate drugs from molecular databases such as ZINC, PubChem, DrugBank, and so on.
<xref rid="bib30" ref-type="bibr">30</xref>
,
<xref rid="bib31" ref-type="bibr">31</xref>
,
<xref rid="bib32" ref-type="bibr">32</xref>
The structural comparison between MERS-CoV and SARS-CoV RBDs shows that although their core subdomains are homologous and similar in structure, their receptor binding subdomains are clearly different. Thus, the core subdomain is an effective candidate target not only for anti-MERS-CoV therapeutics, but also for anti-
<italic>Betacoronavirus</italic>
treatments.
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
</p>
<p id="p0055">Generally, the identification of pockets and cavities of the protein structure is essential for VS and SBDD, while the binding pocket of MERS-CoV RBD remains unknown. In practice, the current situation is not so bad. Lu et al
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
found that although the engagement of the receptor does not induce significant conformational changes in receptor binding motifs, the η2-α4 loop in the RBD core exhibits a surprisingly large conformational difference between the free and the bounded conditions (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
A). That is to say the RBD–DPP4 interaction is largely dependent on the conformational variant of the loop. Therefore, utilizing ligands binding to that region, we can interfere with the essential conformational change, consequently preventing MERS-CoV infection. With the help of PocketPicker, a ligand pocket detection tool, we found computationally that the correct binding pocket of MERS-CoV RBD with a buried and a solvent exposed part is close to the loop (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
B).
<xref rid="bib33" ref-type="bibr">
<sup>33</sup>
</xref>
Therefore, the η2-α4 loop and its peripheral region are important for VS and SBDD to find novel efficient antiviral drugs.
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>Ligands binding pocket of MERS-CoV RBD (PDB:
<ext-link ext-link-type="uri" xlink:href="pdb:4KQZ" id="intref0030">4KQZ</ext-link>
). (A) A structural alignment between the free and the receptor-bounded MERS-CoV RBD. Significant structural variance is observed for the η2-α4 loop in the core subdomain, which is marked with a black arrow. Yellow: free RBD, the core subdomain; green: free RBD, the external subdomain; blue: the bounded RBD. (B) Surface representation of MERS-CoV RBD. The orange spheres represent the η2-α4 loop. The candidate binding pocket predicted by PocketPicker is represented by darker spheres.</p>
</caption>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec6">
<title>Summary</title>
<p id="p0060">Generally speaking, MERS-CoV, the first lineage C
<italic>Betacoronavirus</italic>
known to infect human beings, has attracted worldwide attention as it causes SARS-like infections in humans. To date, neither vaccines nor virus-specific drugs are available, making MERS-CoV a threat to global public health. Although the limited data cannot confirm human-to-human transmission, two new cases that have family contacts with confirmed patients show an increasing probability.
<xref rid="bib3" ref-type="bibr">3</xref>
,
<xref rid="bib34" ref-type="bibr">34</xref>
MERS-CoV utilizes DPP4 as its cell receptor to enter the target cell. The RBD is located in the S1 domain of MERS-CoV S protein and its crystal structure has already been determined. The structure exhibits the mechanism of MERS-CoV binding to DPP4. The identified MERS-CoV RBD may also facilitate the development of vaccines and efficient treatment and ultimately lower the high crude mortality rate and prevent global spread.</p>
</sec>
</body>
<back>
<ref-list id="cebib0010">
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal" id="sref1">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>A novel coronavirus capable of lethal human infections: an emerging picture</article-title>
<source>Virol J</source>
<volume>10</volume>
<year>2013</year>
<fpage>66</fpage>
<comment>[Abstract]</comment>
<pub-id pub-id-type="pmid">23445530</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal" id="sref2">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV): challenges in identifying its source and controlling its spread</article-title>
<source>Microbes Infect</source>
<volume>15</volume>
<year>2013</year>
<fpage>625</fpage>
<lpage>629</lpage>
<pub-id pub-id-type="pmid">23791956</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="book" id="sref3">
<person-group person-group-type="author">
<collab>World Health Organization</collab>
</person-group>
<chapter-title>Middle East respiratory syndrome coronavirus (MERS-CoV)-update</chapter-title>
<year>2013</year>
<publisher-name>WHO</publisher-name>
<publisher-loc>Geneva</publisher-loc>
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2013_09_07/en/index.html" id="intref0010">http://www.who.int/csr/don/2013_09_07/en/index.html</ext-link>
<comment>[accessed 15.09.13]</comment>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal" id="sref4">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>J.F.-W.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S.K.-P.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>P.C.-Y.</given-names>
</name>
</person-group>
<article-title>The emerging novel Middle East respiratory syndrome coronavirus: the “knowns” and “unknowns”</article-title>
<source>J Formosan Med Assoc</source>
<volume>112</volume>
<year>2013</year>
<fpage>372</fpage>
<lpage>381</lpage>
<pub-id pub-id-type="pmid">23883791</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="book" id="sref5">
<person-group person-group-type="author">
<collab>World Health Organization</collab>
</person-group>
<chapter-title>Summary table of SARS cases by country, 1 November 2002–7 August 2003</chapter-title>
<year>2003</year>
<publisher-name>WHO</publisher-name>
<publisher-loc>Geneva</publisher-loc>
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/sars/country/2003_08_15/en/" id="intref0015">http://www.who.int/csr/sars/country/2003_08_15/en/</ext-link>
<comment>[accessed 15.09.13]</comment>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal" id="sref6">
<person-group person-group-type="author">
<name>
<surname>Guery</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Poissy</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>el Mansouf</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Séjourné</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ettahar</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lemaire</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission</article-title>
<source>Lancet</source>
<volume>381</volume>
<year>2013</year>
<fpage>2265</fpage>
<lpage>2272</lpage>
<pub-id pub-id-type="pmid">23727167</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal" id="sref7">
<person-group person-group-type="author">
<name>
<surname>Memish</surname>
<given-names>Z.A.</given-names>
</name>
<name>
<surname>Zumla</surname>
<given-names>A.I.</given-names>
</name>
<name>
<surname>Al-Hakeem</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Al-Rabeeah</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<article-title>Family cluster of Middle East respiratory syndrome coronavirus infections</article-title>
<source>N Engl J Med</source>
<volume>368</volume>
<year>2013</year>
<fpage>2487</fpage>
<lpage>2494</lpage>
<pub-id pub-id-type="pmid">23718156</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal" id="sref8">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McGeer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Perl</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Al Rabeeah</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>D.A.T.</given-names>
</name>
</person-group>
<article-title>Hospital outbreak of Middle East respiratory syndrome coronavirus</article-title>
<source>N Engl J Med</source>
<volume>369</volume>
<year>2013</year>
<fpage>407</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="pmid">23782161</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal" id="sref9">
<person-group person-group-type="author">
<name>
<surname>Woo</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus</article-title>
<source>J Virol</source>
<volume>86</volume>
<year>2012</year>
<fpage>3995</fpage>
<lpage>4008</lpage>
<pub-id pub-id-type="pmid">22278237</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="book" id="sref10">
<person-group person-group-type="author">
<collab>International Committee on Taxonomy of Viruses</collab>
</person-group>
<chapter-title>Virus taxonomy: 2012 release</chapter-title>
<year>2012</year>
<publisher-name>ICTV</publisher-name>
<publisher-loc>Leuven</publisher-loc>
<ext-link ext-link-type="uri" xlink:href="http://ictvonline.org/virusTaxonomy.asp?versionZ2012" id="intref0020">http://ictvonline.org/virusTaxonomy.asp?versionZ2012</ext-link>
<comment>[accessed 15.09.13]</comment>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal" id="sref11">
<person-group person-group-type="author">
<name>
<surname>Woo</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>K.-Y.</given-names>
</name>
</person-group>
<article-title>Coronavirus diversity, phylogeny and interspecies jumping</article-title>
<source>Exp Biol Med</source>
<volume>234</volume>
<year>2009</year>
<fpage>1117</fpage>
<lpage>1127</lpage>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal" id="sref12">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>SARS-like virus in the Middle East: a truly bat-related coronavirus causing human diseases</article-title>
<source>Protein Cell</source>
<volume>3</volume>
<year>2012</year>
<fpage>803</fpage>
<lpage>805</lpage>
<pub-id pub-id-type="pmid">23143870</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal" id="sref13">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Dekkers</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Dijkman</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
<source>Nature</source>
<volume>495</volume>
<year>2013</year>
<fpage>251</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal" id="sref14">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Debnath</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>A predicted receptor-binding and critical neutralizing domain in S protein of the novel human coronavirus HCoV-EMC</article-title>
<source>J Infect</source>
<volume>66</volume>
<year>2013</year>
<fpage>464</fpage>
<lpage>466</lpage>
<pub-id pub-id-type="pmid">23266463</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal" id="sref15">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26</article-title>
<source>Nature</source>
<volume>500</volume>
<year>2013</year>
<fpage>227</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="pmid">23831647</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal" id="sref16">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>B.-J.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The spike protein of SARS-CoV—a target for vaccine and therapeutic development</article-title>
<source>Nat Rev Microbiol</source>
<volume>7</volume>
<year>2009</year>
<fpage>226</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="pmid">19198616</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="journal" id="sref17">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Rajashankar</surname>
<given-names>K.R.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Agnihothram</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.-L.</given-names>
</name>
</person-group>
<article-title>Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus</article-title>
<source>J Virol</source>
<volume>87</volume>
<year>2013</year>
<fpage>10777</fpage>
<lpage>10783</lpage>
<pub-id pub-id-type="pmid">23903833</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal" id="sref18">
<person-group person-group-type="author">
<name>
<surname>Mou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>van Kuppeveld</surname>
<given-names>F.J.</given-names>
</name>
<name>
<surname>Rottier</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Bosch</surname>
<given-names>B.J.</given-names>
</name>
</person-group>
<article-title>The receptor binding domain of the new MERS coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies</article-title>
<source>J Virol</source>
<volume>87</volume>
<year>2013</year>
<fpage>9379</fpage>
<lpage>9383</lpage>
<pub-id pub-id-type="pmid">23785207</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal" id="sref19">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>V.K.</given-names>
</name>
</person-group>
<article-title>Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development</article-title>
<source>J Virol</source>
<volume>87</volume>
<year>2013</year>
<fpage>9939</fpage>
<lpage>9942</lpage>
<pub-id pub-id-type="pmid">23824801</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal" id="sref20">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4</article-title>
<source>Cell Res</source>
<volume>23</volume>
<year>2013</year>
<fpage>986</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="pmid">23835475</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal" id="sref21">
<person-group person-group-type="author">
<name>
<surname>Stivala</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wybrow</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wirth</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Whisstock</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Stuckey</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<article-title>Automatic generation of protein structure cartoons with Pro-origami</article-title>
<source>Bioinformatics</source>
<volume>27</volume>
<year>2011</year>
<fpage>3315</fpage>
<lpage>3316</lpage>
<pub-id pub-id-type="pmid">21994221</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal" id="sref22">
<person-group person-group-type="author">
<name>
<surname>Gorrell</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gysbers</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>McCaughan</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes</article-title>
<source>Scand J Immunol</source>
<volume>54</volume>
<year>2001</year>
<fpage>249</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">11555388</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal" id="sref23">
<person-group person-group-type="author">
<name>
<surname>Boonacker</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Van Noorden</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<article-title>The multifunctional or moonlighting protein CD26/DPPIV</article-title>
<source>Eur J Cell Biol</source>
<volume>82</volume>
<year>2003</year>
<fpage>53</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="pmid">12647932</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal" id="sref24">
<person-group person-group-type="author">
<name>
<surname>Lambeir</surname>
<given-names>A.-M.</given-names>
</name>
<name>
<surname>Durinx</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Scharpé</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>De Meester</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV</article-title>
<source>Crit Rev Clin Lab Sci</source>
<volume>40</volume>
<year>2003</year>
<fpage>209</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="pmid">12892317</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal" id="sref25">
<person-group person-group-type="author">
<name>
<surname>Engel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wermann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Heiser</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Kiefersauer</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>100</volume>
<year>2003</year>
<fpage>5063</fpage>
<lpage>5068</lpage>
<pub-id pub-id-type="pmid">12690074</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal" id="sref26">
<person-group person-group-type="author">
<name>
<surname>Rasmussen</surname>
<given-names>H.B.</given-names>
</name>
<name>
<surname>Branner</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wiberg</surname>
<given-names>F.C.</given-names>
</name>
<name>
<surname>Wagtmann</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog</article-title>
<source>Nat Struct Mol Biol</source>
<volume>10</volume>
<year>2002</year>
<fpage>19</fpage>
<lpage>25</lpage>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal" id="sref27">
<person-group person-group-type="author">
<name>
<surname>Bosch</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
</person-group>
<article-title>Spiking the MERS-coronavirus receptor</article-title>
<source>Cell Res</source>
<volume>23</volume>
<year>2013</year>
<fpage>1069</fpage>
<lpage>1070</lpage>
<pub-id pub-id-type="pmid">23938293</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal" id="sref28">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines</article-title>
<source>Virology</source>
<volume>334</volume>
<year>2005</year>
<fpage>74</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">15749124</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal" id="sref29">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Receptor-binding domain as a target for developing SARS vaccines</article-title>
<source>J Thorac Dis</source>
<volume>5</volume>
<issue>Suppl. 2</issue>
<year>2013</year>
<fpage>S142</fpage>
<lpage>S148</lpage>
<pub-id pub-id-type="pmid">23977435</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal" id="sref30">
<person-group person-group-type="author">
<name>
<surname>Irwin</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Sterling</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mysinger</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Bolstad</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>R.G.</given-names>
</name>
</person-group>
<article-title>ZINC: A free tool to discover chemistry for biology</article-title>
<source>J Chem Inf Model</source>
<volume>52</volume>
<year>2012</year>
<fpage>1757</fpage>
<lpage>1768</lpage>
<pub-id pub-id-type="pmid">22587354</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal" id="sref31">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Suzek</surname>
<given-names>T.O.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>S.H.</given-names>
</name>
</person-group>
<article-title>PubChem: a public information system for analyzing bioactivities of small molecules</article-title>
<source>Nucleic Acids Res</source>
<volume>37</volume>
<issue>Suppl. 2</issue>
<year>2009</year>
<fpage>W623</fpage>
<lpage>W633</lpage>
<pub-id pub-id-type="pmid">19498078</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal" id="sref32">
<person-group person-group-type="author">
<name>
<surname>Knox</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Law</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Jewison</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ly</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Frolkis</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs</article-title>
<source>Nucleic Acids Res</source>
<volume>39</volume>
<year>2011</year>
<fpage>D1035</fpage>
<lpage>D1041</lpage>
<pub-id pub-id-type="pmid">21059682</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal" id="sref33">
<person-group person-group-type="author">
<name>
<surname>Weisel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Proschak</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>PocketPicker: analysis of ligand binding-sites with shape descriptors</article-title>
<source>Chem Cent J</source>
<volume>1</volume>
<year>2007</year>
<fpage>1</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">17880735</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<label>34</label>
<element-citation publication-type="journal" id="sref34">
<person-group person-group-type="author">
<name>
<surname>Bennet</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Alarm bells over MERS coronavirus</article-title>
<source>Lancet Infect Dis</source>
<volume>13</volume>
<year>2013</year>
<fpage>573</fpage>
<lpage>574</lpage>
<pub-id pub-id-type="pmid">23977673</pub-id>
</element-citation>
</ref>
</ref-list>
<ack id="ack0010">
<title>Acknowledgments</title>
<p>We are grateful to our colleagues for their critical reviews and excellent suggestions regarding this manuscript. This work was supported in part by grants from the
<funding-source id="gs1">National Natural Science Foundation of China</funding-source>
(No. 81373311, No. 31300674, No. 81173093, No. 30970643, and No. J1103518) and
<funding-source id="gs2">Special Program for Youth Science and Technology Innovative Research Group of Sichuan Province, China</funding-source>
(No. 2011JTD0026).</p>
</ack>
<fn-group>
<fn id="d32e493">
<p id="ntpara0010">Conflicts of interest: The authors have no conflicts of interest relevant to this article.</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0018280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0018280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021