Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001674 ( Pmc/Corpus ); précédent : 0016739; suivant : 0016750 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Commensal bacteria as a novel delivery system for subunit vaccines directed against agents of bioterrorism</title>
<author>
<name sortKey="Wilson, Rebecca L" sort="Wilson, Rebecca L" uniqKey="Wilson R" first="Rebecca L." last="Wilson">Rebecca L. Wilson</name>
</author>
<author>
<name sortKey="Hruby, Dennis E" sort="Hruby, Dennis E" uniqKey="Hruby D" first="Dennis E." last="Hruby">Dennis E. Hruby</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">15935879</idno>
<idno type="pmc">7125890</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125890</idno>
<idno type="RBID">PMC:7125890</idno>
<idno type="doi">10.1016/j.addr.2005.01.015</idno>
<date when="2005">2005</date>
<idno type="wicri:Area/Pmc/Corpus">001674</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001674</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Commensal bacteria as a novel delivery system for subunit vaccines directed against agents of bioterrorism</title>
<author>
<name sortKey="Wilson, Rebecca L" sort="Wilson, Rebecca L" uniqKey="Wilson R" first="Rebecca L." last="Wilson">Rebecca L. Wilson</name>
</author>
<author>
<name sortKey="Hruby, Dennis E" sort="Hruby, Dennis E" uniqKey="Hruby D" first="Dennis E." last="Hruby">Dennis E. Hruby</name>
</author>
</analytic>
<series>
<title level="j">Advanced Drug Delivery Reviews</title>
<idno type="ISSN">0169-409X</idno>
<idno type="eISSN">1872-8294</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Following the anthrax attacks of 2001 and the recent SARS outbreak, concerns about emerging and re-emerging infectious diseases have catalyzed a renewed interest in developing new vaccination strategies that provide rapid and flexible response options to future threats. Because the probability of encountering one of these exotic agents is unknown, it is essential that new vaccine formulations employ methods that provide effective protection and extremely good safety profiles if they are to be used by either military or civilian populations. One approach, which potentially satisfies these criteria, is the use of live recombinant Gram-positive commensal bacteria as expression vectors. This review provides an overview of the system, its advantages and limitations, and details an example of how Gram-positive commensal bacteria are being developed as a fifth generation vaccine against a Class A biowarfare pathogen, namely smallpox.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Jackson, R J" uniqKey="Jackson R">R.J. Jackson</name>
</author>
<author>
<name sortKey="Ramsay, A J" uniqKey="Ramsay A">A.J. Ramsay</name>
</author>
<author>
<name sortKey="Christensen, C D" uniqKey="Christensen C">C.D. Christensen</name>
</author>
<author>
<name sortKey="Beaton, S" uniqKey="Beaton S">S. Beaton</name>
</author>
<author>
<name sortKey="Hall, D F" uniqKey="Hall D">D.F. Hall</name>
</author>
<author>
<name sortKey="Ramshaw, I A" uniqKey="Ramshaw I">I.A. Ramshaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donnelly, J J" uniqKey="Donnelly J">J.J. Donnelly</name>
</author>
<author>
<name sortKey="Ulmer, J B" uniqKey="Ulmer J">J.B. Ulmer</name>
</author>
<author>
<name sortKey="Liu, M A" uniqKey="Liu M">M.A. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, M A" uniqKey="Liu M">M.A. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glenn, G M" uniqKey="Glenn G">G.M. Glenn</name>
</author>
<author>
<name sortKey="Kenney, R T" uniqKey="Kenney R">R.T. Kenney</name>
</author>
<author>
<name sortKey="Ellingsworth, L R" uniqKey="Ellingsworth L">L.R. Ellingsworth</name>
</author>
<author>
<name sortKey="Frech, S A" uniqKey="Frech S">S.A. Frech</name>
</author>
<author>
<name sortKey="Hammond, S A" uniqKey="Hammond S">S.A. Hammond</name>
</author>
<author>
<name sortKey="Zoeteweij, J P" uniqKey="Zoeteweij J">J.P. Zoeteweij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, S A" uniqKey="Hammond S">S.A. Hammond</name>
</author>
<author>
<name sortKey="Guebre Xabier, M" uniqKey="Guebre Xabier M">M. Guebre-Xabier</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Glenn, G M" uniqKey="Glenn G">G.M. Glenn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mason, H S" uniqKey="Mason H">H.S. Mason</name>
</author>
<author>
<name sortKey="Warzecha, H" uniqKey="Warzecha H">H. Warzecha</name>
</author>
<author>
<name sortKey="Mor, T" uniqKey="Mor T">T. Mor</name>
</author>
<author>
<name sortKey="Arntzen, C J" uniqKey="Arntzen C">C.J. Arntzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcghee, J R" uniqKey="Mcghee J">J.R. McGhee</name>
</author>
<author>
<name sortKey="Mestecky, J" uniqKey="Mestecky J">J. Mestecky</name>
</author>
<author>
<name sortKey="Dertzbaugh, M T" uniqKey="Dertzbaugh M">M.T. Dertzbaugh</name>
</author>
<author>
<name sortKey="Eldridge, J H" uniqKey="Eldridge J">J.H. Eldridge</name>
</author>
<author>
<name sortKey="Hirasawa, M" uniqKey="Hirasawa M">M. Hirasawa</name>
</author>
<author>
<name sortKey="Kiyono, H" uniqKey="Kiyono H">H. Kiyono</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liljeqvist, S" uniqKey="Liljeqvist S">S. Liljeqvist</name>
</author>
<author>
<name sortKey="Stahl, S" uniqKey="Stahl S">S. Stahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medina, E" uniqKey="Medina E">E. Medina</name>
</author>
<author>
<name sortKey="Guzman, C A" uniqKey="Guzman C">C.A. Guzman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneewind, O" uniqKey="Schneewind O">O. Schneewind</name>
</author>
<author>
<name sortKey="Model, P" uniqKey="Model P">P. Model</name>
</author>
<author>
<name sortKey="Fischetti, V A" uniqKey="Fischetti V">V.A. Fischetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, K F" uniqKey="Jones K">K.F. Jones</name>
</author>
<author>
<name sortKey="Khan, S A" uniqKey="Khan S">S.A. Khan</name>
</author>
<author>
<name sortKey="Erickson, B W" uniqKey="Erickson B">B.W. Erickson</name>
</author>
<author>
<name sortKey="Hollingshead, S K" uniqKey="Hollingshead S">S.K. Hollingshead</name>
</author>
<author>
<name sortKey="Scott, J R" uniqKey="Scott J">J.R. Scott</name>
</author>
<author>
<name sortKey="Fischetti, V A" uniqKey="Fischetti V">V.A. Fischetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Byrd, C M" uniqKey="Byrd C">C.M. Byrd</name>
</author>
<author>
<name sortKey="Bolken, T C" uniqKey="Bolken T">T.C. Bolken</name>
</author>
<author>
<name sortKey="Jones, K F" uniqKey="Jones K">K.F. Jones</name>
</author>
<author>
<name sortKey="Warren, T K" uniqKey="Warren T">T.K. Warren</name>
</author>
<author>
<name sortKey="Vella, A T" uniqKey="Vella A">A.T. Vella</name>
</author>
<author>
<name sortKey="Mcdonald, J" uniqKey="Mcdonald J">J. McDonald</name>
</author>
<author>
<name sortKey="King, D" uniqKey="King D">D. King</name>
</author>
<author>
<name sortKey="Blackwood, Z" uniqKey="Blackwood Z">Z. Blackwood</name>
</author>
<author>
<name sortKey="Hruby, D E" uniqKey="Hruby D">D.E. Hruby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bolken, T C" uniqKey="Bolken T">T.C. Bolken</name>
</author>
<author>
<name sortKey="Franke, C A" uniqKey="Franke C">C.A. Franke</name>
</author>
<author>
<name sortKey="Zeller, G O" uniqKey="Zeller G">G.O. Zeller</name>
</author>
<author>
<name sortKey="Hruby, D E" uniqKey="Hruby D">D.E. Hruby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
<author>
<name sortKey="King, T P" uniqKey="King T">T.P. King</name>
</author>
<author>
<name sortKey="Fischetti, V A" uniqKey="Fischetti V">V.A. Fischetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Rush, C M" uniqKey="Rush C">C.M. Rush</name>
</author>
<author>
<name sortKey="Sestini, P" uniqKey="Sestini P">P. Sestini</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Fabio, S" uniqKey="Di Fabio S">S. Di Fabio</name>
</author>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Rush, C M" uniqKey="Rush C">C.M. Rush</name>
</author>
<author>
<name sortKey="Corrias, F" uniqKey="Corrias F">F. Corrias</name>
</author>
<author>
<name sortKey="Panzini, G L" uniqKey="Panzini G">G.L. Panzini</name>
</author>
<author>
<name sortKey="Pace, M" uniqKey="Pace M">M. Pace</name>
</author>
<author>
<name sortKey="Verani, P" uniqKey="Verani P">P. Verani</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
<author>
<name sortKey="Titti, F" uniqKey="Titti F">F. Titti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
<author>
<name sortKey="Oggioni, M R" uniqKey="Oggioni M">M.R. Oggioni</name>
</author>
<author>
<name sortKey="Manganelli, R" uniqKey="Manganelli R">R. Manganelli</name>
</author>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Fischetti, V A" uniqKey="Fischetti V">V.A. Fischetti</name>
</author>
<author>
<name sortKey="Fenoglio, D" uniqKey="Fenoglio D">D. Fenoglio</name>
</author>
<author>
<name sortKey="Valle, M T" uniqKey="Valle M">M.T. Valle</name>
</author>
<author>
<name sortKey="Kunkl, A" uniqKey="Kunkl A">A. Kunkl</name>
</author>
<author>
<name sortKey="Manca, F" uniqKey="Manca F">F. Manca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S F" uniqKey="Lee S">S.F. Lee</name>
</author>
<author>
<name sortKey="Halperin, S A" uniqKey="Halperin S">S.A. Halperin</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Macarthur, A" uniqKey="Macarthur A">A. MacArthur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maggi, T" uniqKey="Maggi T">T. Maggi</name>
</author>
<author>
<name sortKey="Oggioni, M R" uniqKey="Oggioni M">M.R. Oggioni</name>
</author>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Bianchi Bandinelli, M L" uniqKey="Bianchi Bandinelli M">M.L. Bianchi Bandinelli</name>
</author>
<author>
<name sortKey="Soldateschi, D" uniqKey="Soldateschi D">D. Soldateschi</name>
</author>
<author>
<name sortKey="Wiesmuller, K H" uniqKey="Wiesmuller K">K.H. Wiesmuller</name>
</author>
<author>
<name sortKey="Muller, C P" uniqKey="Muller C">C.P. Muller</name>
</author>
<author>
<name sortKey="Valensin, P E" uniqKey="Valensin P">P.E. Valensin</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maggi, T" uniqKey="Maggi T">T. Maggi</name>
</author>
<author>
<name sortKey="Spinosa, M" uniqKey="Spinosa M">M. Spinosa</name>
</author>
<author>
<name sortKey="Ricci, S" uniqKey="Ricci S">S. Ricci</name>
</author>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
<author>
<name sortKey="Oggioni, M R" uniqKey="Oggioni M">M.R. Oggioni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oggioni, M R" uniqKey="Oggioni M">M.R. Oggioni</name>
</author>
<author>
<name sortKey="Manganelli, R" uniqKey="Manganelli R">R. Manganelli</name>
</author>
<author>
<name sortKey="Contorni, M" uniqKey="Contorni M">M. Contorni</name>
</author>
<author>
<name sortKey="Tommasino, M" uniqKey="Tommasino M">M. Tommasino</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oggioni, M R" uniqKey="Oggioni M">M.R. Oggioni</name>
</author>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Romano, L" uniqKey="Romano L">L. Romano</name>
</author>
<author>
<name sortKey="Peruzzi, F" uniqKey="Peruzzi F">F. Peruzzi</name>
</author>
<author>
<name sortKey="Maggi, T" uniqKey="Maggi T">T. Maggi</name>
</author>
<author>
<name sortKey="Lozzi, L" uniqKey="Lozzi L">L. Lozzi</name>
</author>
<author>
<name sortKey="Bracci, L" uniqKey="Bracci L">L. Bracci</name>
</author>
<author>
<name sortKey="Zazzi, M" uniqKey="Zazzi M">M. Zazzi</name>
</author>
<author>
<name sortKey="Manca, F" uniqKey="Manca F">F. Manca</name>
</author>
<author>
<name sortKey="Valensin, P E" uniqKey="Valensin P">P.E. Valensin</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A. Sharma</name>
</author>
<author>
<name sortKey="Nagata, H" uniqKey="Nagata H">H. Nagata</name>
</author>
<author>
<name sortKey="Hamada, N" uniqKey="Hamada N">N. Hamada</name>
</author>
<author>
<name sortKey="Sojar, H T" uniqKey="Sojar H">H.T. Sojar</name>
</author>
<author>
<name sortKey="Hruby, D E" uniqKey="Hruby D">D.E. Hruby</name>
</author>
<author>
<name sortKey="Kuramitsu, H K" uniqKey="Kuramitsu H">H.K. Kuramitsu</name>
</author>
<author>
<name sortKey="Genco, R J" uniqKey="Genco R">R.J. Genco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corinti, S" uniqKey="Corinti S">S. Corinti</name>
</author>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Cavani, A" uniqKey="Cavani A">A. Cavani</name>
</author>
<author>
<name sortKey="Rescigno, M" uniqKey="Rescigno M">M. Rescigno</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
<author>
<name sortKey="Ricciardi Castagnoli, P" uniqKey="Ricciardi Castagnoli P">P. Ricciardi-Castagnoli</name>
</author>
<author>
<name sortKey="Girolomoni, G" uniqKey="Girolomoni G">G. Girolomoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rescigno, M" uniqKey="Rescigno M">M. Rescigno</name>
</author>
<author>
<name sortKey="Citterio, S" uniqKey="Citterio S">S. Citterio</name>
</author>
<author>
<name sortKey="Thery, C" uniqKey="Thery C">C. Thery</name>
</author>
<author>
<name sortKey="Rittig, M" uniqKey="Rittig M">M. Rittig</name>
</author>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
<author>
<name sortKey="Amigorena, S" uniqKey="Amigorena S">S. Amigorena</name>
</author>
<author>
<name sortKey="Ricciardi Castagnoli, P" uniqKey="Ricciardi Castagnoli P">P. Ricciardi-Castagnoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medaglini, D" uniqKey="Medaglini D">D. Medaglini</name>
</author>
<author>
<name sortKey="Ciabattini, A" uniqKey="Ciabattini A">A. Ciabattini</name>
</author>
<author>
<name sortKey="Spinosa, M R" uniqKey="Spinosa M">M.R. Spinosa</name>
</author>
<author>
<name sortKey="Maggi, T" uniqKey="Maggi T">T. Maggi</name>
</author>
<author>
<name sortKey="Marcotte, H" uniqKey="Marcotte H">H. Marcotte</name>
</author>
<author>
<name sortKey="Oggioni, M R" uniqKey="Oggioni M">M.R. Oggioni</name>
</author>
<author>
<name sortKey="Pozzi, G" uniqKey="Pozzi G">G. Pozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A. Sharma</name>
</author>
<author>
<name sortKey="Honma, K" uniqKey="Honma K">K. Honma</name>
</author>
<author>
<name sortKey="Evans, R T" uniqKey="Evans R">R.T. Evans</name>
</author>
<author>
<name sortKey="Hruby, D E" uniqKey="Hruby D">D.E. Hruby</name>
</author>
<author>
<name sortKey="Genco, R J" uniqKey="Genco R">R.J. Genco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cdc" uniqKey="Cdc">CDC</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hruby, D E" uniqKey="Hruby D">D.E. Hruby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esposito, J J" uniqKey="Esposito J">J.J. Esposito</name>
</author>
<author>
<name sortKey="Knight, J C" uniqKey="Knight J">J.C. Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramirez, J C" uniqKey="Ramirez J">J.C. Ramirez</name>
</author>
<author>
<name sortKey="Gherardi, M M" uniqKey="Gherardi M">M.M. Gherardi</name>
</author>
<author>
<name sortKey="Esteban, M" uniqKey="Esteban M">M. Esteban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wyatt, L S" uniqKey="Wyatt L">L.S. Wyatt</name>
</author>
<author>
<name sortKey="Shors, S T" uniqKey="Shors S">S.T. Shors</name>
</author>
<author>
<name sortKey="Murphy, B R" uniqKey="Murphy B">B.R. Murphy</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutter, G" uniqKey="Sutter G">G. Sutter</name>
</author>
<author>
<name sortKey="Wyatt, L S" uniqKey="Wyatt L">L.S. Wyatt</name>
</author>
<author>
<name sortKey="Foley, P L" uniqKey="Foley P">P.L. Foley</name>
</author>
<author>
<name sortKey="Bennink, J R" uniqKey="Bennink J">J.R. Bennink</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holzer, G W" uniqKey="Holzer G">G.W. Holzer</name>
</author>
<author>
<name sortKey="Remp, G" uniqKey="Remp G">G. Remp</name>
</author>
<author>
<name sortKey="Antoine, G" uniqKey="Antoine G">G. Antoine</name>
</author>
<author>
<name sortKey="Pfeiderer, M" uniqKey="Pfeiderer M">M. Pfeiderer</name>
</author>
<author>
<name sortKey="Enzersberger, O M" uniqKey="Enzersberger O">O.M. Enzersberger</name>
</author>
<author>
<name sortKey="Emsenhuber, W" uniqKey="Emsenhuber W">W. Emsenhuber</name>
</author>
<author>
<name sortKey="Hammerle, T" uniqKey="Hammerle T">T. Hammerle</name>
</author>
<author>
<name sortKey="Gruber, F" uniqKey="Gruber F">F. Gruber</name>
</author>
<author>
<name sortKey="Urban, C" uniqKey="Urban C">C. Urban</name>
</author>
<author>
<name sortKey="Falkner, F G" uniqKey="Falkner F">F.G. Falkner</name>
</author>
<author>
<name sortKey="Dorner, F" uniqKey="Dorner F">F. Dorner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durbin, A P" uniqKey="Durbin A">A.P. Durbin</name>
</author>
<author>
<name sortKey="Wyatt, L S" uniqKey="Wyatt L">L.S. Wyatt</name>
</author>
<author>
<name sortKey="Siew, J" uniqKey="Siew J">J. Siew</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
<author>
<name sortKey="Murphy, B R" uniqKey="Murphy B">B.R. Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carroll, M W" uniqKey="Carroll M">M.W. Carroll</name>
</author>
<author>
<name sortKey="Overwijk, W W" uniqKey="Overwijk W">W.W. Overwijk</name>
</author>
<author>
<name sortKey="Chamberlain, R S" uniqKey="Chamberlain R">R.S. Chamberlain</name>
</author>
<author>
<name sortKey="Rosenberg, S A" uniqKey="Rosenberg S">S.A. Rosenberg</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
<author>
<name sortKey="Restifo, N P" uniqKey="Restifo N">N.P. Restifo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belyakov, I M" uniqKey="Belyakov I">I.M. Belyakov</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
<author>
<name sortKey="Strober, W" uniqKey="Strober W">W. Strober</name>
</author>
<author>
<name sortKey="Berzofsky, J A" uniqKey="Berzofsky J">J.A. Berzofsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, L G" uniqKey="Payne L">L.G. Payne</name>
</author>
<author>
<name sortKey="Kristenson, K" uniqKey="Kristenson K">K. Kristenson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blasco, R" uniqKey="Blasco R">R. Blasco</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, G L" uniqKey="Smith G">G.L. Smith</name>
</author>
<author>
<name sortKey="Vanderplasschen, A" uniqKey="Vanderplasschen A">A. Vanderplasschen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shchelkunov, S N" uniqKey="Shchelkunov S">S.N. Shchelkunov</name>
</author>
<author>
<name sortKey="Totmenin, A V" uniqKey="Totmenin A">A.V. Totmenin</name>
</author>
<author>
<name sortKey="Babkin, I V" uniqKey="Babkin I">I.V. Babkin</name>
</author>
<author>
<name sortKey="Safronov, P F" uniqKey="Safronov P">P.F. Safronov</name>
</author>
<author>
<name sortKey="Ryazankina, O I" uniqKey="Ryazankina O">O.I. Ryazankina</name>
</author>
<author>
<name sortKey="Petroy, N A" uniqKey="Petroy N">N.A. Petroy</name>
</author>
<author>
<name sortKey="Gutorov, V V" uniqKey="Gutorov V">V.V. Gutorov</name>
</author>
<author>
<name sortKey="Uvarova, E A" uniqKey="Uvarova E">E.A. Uvarova</name>
</author>
<author>
<name sortKey="Mikheev, M V" uniqKey="Mikheev M">M.V. Mikheev</name>
</author>
<author>
<name sortKey="Sisler, J R" uniqKey="Sisler J">J.R. Sisler</name>
</author>
<author>
<name sortKey="Esposito, J J" uniqKey="Esposito J">J.J. Esposito</name>
</author>
<author>
<name sortKey="Jahrling, P B" uniqKey="Jahrling P">P.B. Jahrling</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B. Moss</name>
</author>
<author>
<name sortKey="Sandakhchiev, L S" uniqKey="Sandakhchiev L">L.S. Sandakhchiev</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Adv Drug Deliv Rev</journal-id>
<journal-id journal-id-type="iso-abbrev">Adv. Drug Deliv. Rev</journal-id>
<journal-title-group>
<journal-title>Advanced Drug Delivery Reviews</journal-title>
</journal-title-group>
<issn pub-type="ppub">0169-409X</issn>
<issn pub-type="epub">1872-8294</issn>
<publisher>
<publisher-name>Elsevier B.V.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">15935879</article-id>
<article-id pub-id-type="pmc">7125890</article-id>
<article-id pub-id-type="publisher-id">S0169-409X(05)00050-5</article-id>
<article-id pub-id-type="doi">10.1016/j.addr.2005.01.015</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Commensal bacteria as a novel delivery system for subunit vaccines directed against agents of bioterrorism</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wilson</surname>
<given-names>Rebecca L.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hruby</surname>
<given-names>Dennis E.</given-names>
</name>
<email>dhruby@sgph.com</email>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff>SIGA Technologies, Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333, United States</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author. Tel.: +1 541 753 2000; fax: +1 541 753 9999.
<email>dhruby@sgph.com</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>4</month>
<year>2005</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>17</day>
<month>6</month>
<year>2005</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>4</month>
<year>2005</year>
</pub-date>
<volume>57</volume>
<issue>9</issue>
<fpage>1392</fpage>
<lpage>1402</lpage>
<history>
<date date-type="received">
<day>15</day>
<month>12</month>
<year>2003</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>1</month>
<year>2005</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2005 Elsevier B.V. All rights reserved.</copyright-statement>
<copyright-year>2005</copyright-year>
<copyright-holder>Elsevier B.V.</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract>
<p>Following the anthrax attacks of 2001 and the recent SARS outbreak, concerns about emerging and re-emerging infectious diseases have catalyzed a renewed interest in developing new vaccination strategies that provide rapid and flexible response options to future threats. Because the probability of encountering one of these exotic agents is unknown, it is essential that new vaccine formulations employ methods that provide effective protection and extremely good safety profiles if they are to be used by either military or civilian populations. One approach, which potentially satisfies these criteria, is the use of live recombinant Gram-positive commensal bacteria as expression vectors. This review provides an overview of the system, its advantages and limitations, and details an example of how Gram-positive commensal bacteria are being developed as a fifth generation vaccine against a Class A biowarfare pathogen, namely smallpox.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Mucosal immunity</kwd>
<kwd>Surface expression</kwd>
<kwd>Smallpox</kwd>
<kwd>Vaccinia antigens</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<label>1</label>
<title>Introduction</title>
<sec>
<label>1.1</label>
<title>Biowarfare</title>
<p>One of the major biomedical concerns is the continued emergence of new infectious agents that cause disease in the human population. Recent years have provided a number of examples including HIV, West Nile Virus, SARS, and increasing frequency of antibiotic-resistant bacterial isolates. Although nature has been responsible for these problems, of equally great concern is the possibility that infectious agents will be introduced into our environment by a deliberate act of bioterrorism or biowarfare.</p>
<p>Biowarfare concerns used to be limited to battlefield interactions between armed combatants. However, with ready access to modern molecular biology and microbiological procedures, it is relatively easy for a person to obtain, grow, and disperse a biowarfare agent for the express purpose of causing morbidity and mortality in a target population. While chemicals and toxins are bona fide threats, infectious pathogens represent the biggest problem for several reasons. First, there is a wide diversity of pathogenic agents (bacteria, viruses, fungi, etc.) that are capable of causing a variety of diseases. Second, unlike chemicals or toxins, microorganisms have the ability to replicate and survive in the environment. And third, in some cases microorganisms have the ability to spread from individual to individual. Once a weapon like this is deployed, it cannot be recalled or controlled, nor can it distinguish between friend and foe.</p>
</sec>
<sec>
<label>1.2</label>
<title>Category A, B, C biopathogens</title>
<p>A list of viral or bacterial pathogens, rated according to their predicted risk to national security, was compiled by the Centers for Disease Control and Prevention (
<xref rid="tbl1" ref-type="table">Table 1</xref>
). Category A agents pose the most serious threat because they can easily be disseminated or spread from person to person, can result in high mortality rates, may cause public panic, and would require special action for public health preparedness. Those pathogens in Category B are second in priority for their moderate ease of dissemination and their moderate morbidity and low mortality rates. In addition, CDC's diagnostic capacity and disease surveillance capability for these agents is currently inadequate and would require vast improvements. Agents comprising Category C include those that could be easily engineered for mass dissemination in the future because of their availability and their potential to be easily produced and disseminated.
<table-wrap position="float" id="tbl1">
<label>Table 1</label>
<caption>
<p>Biological threat agents of concern</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top">
<italic>Category A</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top">Variola major (smallpox)</td>
</tr>
<tr>
<td valign="top">
<italic>Bacillus anthracis</italic>
(anthrax)</td>
</tr>
<tr>
<td valign="top">
<italic>Yersinia pestis</italic>
(plague)</td>
</tr>
<tr>
<td valign="top">
<italic>Clostridium botulinum</italic>
(botulism)</td>
</tr>
<tr>
<td valign="top">
<italic>Francisella tularensis</italic>
(tularemia)</td>
</tr>
<tr>
<td valign="top">Filoviruses and arenaviruses</td>
</tr>
<tr>
<td valign="top">

</td>
</tr>
<tr>
<td valign="top">Category B
<hr></hr>
</td>
</tr>
<tr>
<td valign="top">
<italic>Coxiella burnetti</italic>
(Q fever)</td>
</tr>
<tr>
<td valign="top">
<italic>Brucella</italic>
spp. (brucellosis)</td>
</tr>
<tr>
<td valign="top">
<italic>Burkholderia mallei</italic>
(glanders)</td>
</tr>
<tr>
<td valign="top">Alphaviruses</td>
</tr>
<tr>
<td valign="top">
<italic>Ricinus communis</italic>
(ricin)</td>
</tr>
<tr>
<td valign="top">
<italic>Clostridium perfringens</italic>
(ɛ toxin)</td>
</tr>
<tr>
<td valign="top">
<italic>Staphylococcus aureas</italic>
(enterotoxin B)</td>
</tr>
<tr>
<td valign="top">Various food and waterborne agents (e.g.
<italic>Salmonella</italic>
and
<italic>Vibrio</italic>
ssp.)</td>
</tr>
<tr>
<td valign="top">

</td>
</tr>
<tr>
<td valign="top">Category C
<hr></hr>
</td>
</tr>
<tr>
<td valign="top">Nipah virus</td>
</tr>
<tr>
<td valign="top">Hantaviruses</td>
</tr>
<tr>
<td valign="top">Tickborne hemorrhagic fever viruses</td>
</tr>
<tr>
<td valign="top">Tickborne encephalitis viruses</td>
</tr>
<tr>
<td valign="top">Yellow fever virus</td>
</tr>
<tr>
<td valign="top">Multiple-drug-resistant
<italic>Mycobacterium tuberculosis</italic>
</td>
</tr>
<tr>
<td valign="top">

</td>
</tr>
<tr>
<td valign="top">Other
<hr></hr>
</td>
</tr>
<tr>
<td valign="top">SARS virus</td>
</tr>
<tr>
<td valign="top">West Nile virus</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>Of the pathogens listed in
<xref rid="tbl1" ref-type="table">Table 1</xref>
, those that cause smallpox, anthrax, and plague are particularly dangerous because they are easily spread from person to person via a respiratory route. An accidental, planned, or natural outbreak of one of these agents with respiratory mode of transmission, combined with frequent worldwide travel prevalent in today's society could lead to disastrous consequences. The potential for this to occur was evident during the recent SARS outbreak. Had the coronavirus responsible for causing SARS been more virulent, or more easily transmitted, the outcome of last year's outbreak could have been devastating.</p>
<p>In addition to the introduction of natural pathogens into the human population by bioterrorists, the capability exists for pathogens to be purposefully engineered to become even more infectious. The ease with which pathogens may be made more virulent was demonstrated in experiments performed by Jackson et al.
<xref rid="bib1" ref-type="bibr">[1]</xref>
. In these experiments an immune-suppressing gene was spliced into a mousepox virus, creating a virus that caused significant mortality, even in immunized mice.</p>
</sec>
<sec>
<label>1.3</label>
<title>Components of biowarfare defense</title>
<p>In order to effectively protect the population against infectious biowarfare threats, a number of measures need to be deployed: Detection (or surveillance), development of methods for monitoring our environmental space and detecting when an unusual or unexpected infectious agent arrives; Diagnostics, rapid methods for determining what type of pathogen has arrived, be it a toxin, bacteria or virus, and perhaps to profile its genome for drug resistance; Treatment, development of drugs or therapeutics to treat individuals exposed or about to be exposed (first-responders or military personnel) to non-traditional pathogenic agents; Decontamination, neutralization and/or removal from the environment where it was introduced or shed by infected individuals; Epidemiology, to identify all of the individuals who were or are at risk, and finally; Prophylaxis, the development and deployment of effective and safe vaccines to either break an epidemic or prevent primary infections (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
). While all of these measures are important in the overall biodefense scheme, the development of a new generation of vaccines is the focus of the subsequent discussion.
<fig id="fig1">
<label>Fig. 1</label>
<caption>
<p>Essential elements of an effective biowarfare defense strategy. Vaccines can be designed for both therapeutic and prophylactic uses.</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
</p>
</sec>
<sec>
<label>1.4</label>
<title>Five generations of vaccines</title>
<p>Vaccines are widely considered to be one of the miracles of modern medicine. Their widespread implementation has greatly reduced the disease burden from once common diseases such as pertussis and measles, and in the case of smallpox, completely eliminated the disease from the human population. Historically, there have been four generations of vaccines. For example, with regard to viral vaccines, the first generation is represented by live viruses, such as vaccinia virus or rabies virus, that were grown in animals, harvested, and then chemically inactivated (in the case of rabies virus). The second generation of vaccines was grown on embryonated chicken eggs, as typified by the traditional influenza vaccine. The advent of cell culture technology heralded the third generation of vaccines, such as measles or mumps that were grown in tissue culture cells. The fourth generation of vaccines is currently the state-of-the-art, as typified by the Hepatitis B vaccine, in which a component of a virus is cloned, over-expressed, and purified from a recombinant microorganism and then delivered as a subunit vaccine in combination with an adjuvant.</p>
<p>There are some unique challenges associated with developing vaccines against biowarfare agents which make traditional vaccine development approaches difficult. In many cases there is a paucity of research data available about the replication and virulence mechanisms of exotic pathogens. Likewise, in some cases such as smallpox, there are no appropriate animal models in which to conduct challenge experiments. Moreover, since many of the disease agents of interest cause death they cannot be tested in humans directly.</p>
<p>Vaccine development for biowarfare agents represents a conundrum. On one hand, the diseases in question have high associated morbidity and mortality, yet on the other hand, the likelihood of encountering these pathogens is extremely low. Since all vaccines have some side effects associated with them, one needs to carefully consider the risk-to-benefit ratio for these types of products. In order for a vaccine against a biowarfare agent to be widely implemented, it will have to be shown to be effective in an animal model and extremely safe. It is unlikely that traditional vaccine approaches will meet these requirements. Therefore, fifth generation vaccine delivery technologies will need to be employed. While there are a number of new vaccine delivery technologies in development that show promise, including DNA vaccines
<xref rid="bib2" ref-type="bibr">[2]</xref>
,
<xref rid="bib3" ref-type="bibr">[3]</xref>
, transdermal patches
<xref rid="bib4" ref-type="bibr">[4]</xref>
,
<xref rid="bib5" ref-type="bibr">[5]</xref>
, and recombinant plants
<xref rid="bib6" ref-type="bibr">[6]</xref>
, the use of commensal bacteria as an antigen delivery platform holds particular promise for this utility.</p>
</sec>
</sec>
<sec>
<label>2</label>
<title>Commensal bacteria as vaccine vectors</title>
<sec>
<label>2.1</label>
<title>General concept</title>
<p>Commensal bacteria are those that are found in the natural flora of living organisms. These bacteria reside mainly within mucosal sites such as the mouth, the nose, the lungs, and the gastrointestinal and urogenital tracts. Although normally tolerant of commensal organisms, mucosal surfaces present physical barriers to invading pathogens. They also provide a primary line of defense because they possess specific local immune systems that provide an important component of protective immunity
<xref rid="bib7" ref-type="bibr">[7]</xref>
. Antigen delivery directly to mucosal sites via non-pathogenic commensal bacterial vectors could provide a significant advantage over some of the more traditional vaccines in that live bacteria are capable of stimulating sustained systemic as well as local immune responses
<xref rid="bib8" ref-type="bibr">[8]</xref>
. In addition, commensal bacteria are able to colonize the niche invaded by the pathogen and stimulate an immune response at their portal of entry to prevent infection. This ability, combined with the facts that bacteria are easily administered (i.e. topically), are cost efficient, and are well-tolerated
<xref rid="bib9" ref-type="bibr">[9]</xref>
, makes live commensal bacteria attractive vehicles for subunit vaccine delivery. One such promising commensal bacterium is
<italic>Streptococcus gordonii</italic>
, a normal inhabitant of the human oral cavity.</p>
<p>The secreted protein expression (SPEX) or the bacterial commensal vector (BCV) systems are novel protein expression vector systems that use
<italic>S. gordonii</italic>
to produce and export proteins (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
). These systems use the conserved pathway that all Gram-positive bacteria utilize to export and anchor proteins on the cell surface
<xref rid="bib10" ref-type="bibr">[10]</xref>
. The foreign proteins are directed to the cell surface of the Gram-positive host by using portions of the M protein, a surface protein of
<italic>S. pyogenes</italic>
, as a fusion partner. The C-terminal end of the M protein consists of a conserved immunogenic C-repeat region (CRR), a hydrophilic region, the highly conserved enzymatic cleavage site (Pro/Gly), and hydrophobic amino acids that act to anchor the M protein to the cell surface (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
A). If secreted proteins are needed a stop codon is introduced at the carboxy terminus of the foreign protein. Without the membrane-anchoring regions to retain the protein on the surface of
<italic>S. gordonii</italic>
, the fusion protein is translocated through the cell membrane of the Gram-positive host cell, and secreted directly into the culture medium (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
B). This is called the SPEX vector system (for secreted protein expression).
<fig id="fig2">
<label>Fig. 2</label>
<caption>
<p>Uses of commensal bacteria in vaccine formulations.</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
<fig id="fig3">
<label>Fig. 3</label>
<caption>
<p>Construction of BCV recombinants. (A) Expression of antigen anchored to the bacterial surface using BCV. (B) Expression and secretion of antigen using SPEX.</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
</p>
</sec>
<sec>
<label>2.2</label>
<title>Recombinant construction</title>
<p>After a candidate antigen has been identified, it is a relatively easy task to create the commensal BCV recombinant for its expression. Restriction sites are incorporated into primers homologous to the DNA sequence of interest, and the gene is synthesized by PCR. The DNA fragment is cloned into plasmid pSMB104. Because this plasmid cannot replicate in the Gram-positive host, it must integrate into the chromosome of the naturally competent
<italic>S. gordonii</italic>
in order to impart erythromycin resistance. Integration into the correct chromosomal location is confirmed by PCR, and expression of the encoded antigen is tested by Western blot using the appropriate antisera. Because the encoded antigen exists as an M-protein fusion, if no specific antiserum is available for the antigen, expression of the heterologous protein can be tested by reactivity with an anti-M protein monoclonal antibody
<xref rid="bib11" ref-type="bibr">[11]</xref>
.</p>
<p>A number of different promoter elements and insertion sites that enable the expression of multiple foreign inserts from the same recombinant have been identified in
<italic>S. gordonii</italic>
<xref rid="bib12" ref-type="bibr">[12]</xref>
. This could potentially allow for the simultaneous presentation of two or more antigens on a single bacterium. In addition, insertion sites containing inducible promoters have been characterized, thereby allowing the controlled expression of the heterologous gene
<xref rid="bib13" ref-type="bibr">[13]</xref>
. Finally, it is possible to express the antigen from the chromosome or from a plasmid. The plasmid-based system can easily be adapted for expression in other Gram-positive species such as
<italic>Lactococcus lactis</italic>
. For example, we have successfully expressed portions of the
<italic>S. pyogenes</italic>
M6 protein on the surface of
<italic>L. lactis</italic>
from a plasmid (Hruby, unpublished).</p>
</sec>
<sec>
<label>2.3</label>
<title>Antigen expression</title>
<p>Proteins from virus, bacteria, protozoans, animals, and humans have been successfully expressed using
<italic>S. gordonii</italic>
.
<xref rid="tbl2" ref-type="table">Table 2</xref>
lists the large number of heterologous proteins expressed by the BCV/SPEX system that have been shown to be reactive with the appropriate antisera. While this is an impressive list there are some limitations to the use of bacteria for the expression of eukaryotic proteins. Bacteria are not able to perform the post-translational processing, i.e. disulfide bonds, glycosylation, myristoylation, etc., important for the structure and function of many eukaryotic proteins. Hence, antibodies with specificities that include recognition of the modified proteins will not be generated in response to the BCV bacterial expression vector and alternative modes of antigen delivery would need to be explored.
<table-wrap position="float" id="tbl2">
<label>Table 2</label>
<caption>
<p>Examples of foreign antigens expressed in the BCV and SPEX systems</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top">Protein</th>
<th valign="top">Source</th>
<th valign="top">Unfused mol. mass (kDa)</th>
<th valign="top">Form</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top">Gp120</td>
<td valign="top">HIV-1</td>
<td align="char" valign="top">1.7</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">Ag5.2 (hornet venom toxin)</td>
<td valign="top">Hornet</td>
<td align="char" valign="top">23.5</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">E7 protein (transforming protein)</td>
<td valign="top">HPV-16</td>
<td align="char" valign="top">11.3</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">OVA (ovalbumin)</td>
<td valign="top">Chicken</td>
<td align="char" valign="top">39.0</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">CRR (M6 protein)</td>
<td valign="top">
<italic>S. pyogenes</italic>
</td>
<td align="char" valign="top">25.0</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top"> Other derivatives</td>
<td valign="top"></td>
<td align="char" valign="top">45.0</td>
<td valign="top">Secreted</td>
</tr>
<tr>
<td valign="top">gD2</td>
<td valign="top">HSV</td>
<td align="char" valign="top">36.6</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">Gp120 (envelope protein)</td>
<td valign="top">HIV</td>
<td align="char" valign="top">55.1</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">Gp120 (V3 loop)</td>
<td valign="top">HIV</td>
<td align="char" valign="top">12.9</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td rowspan="2" valign="top">FimA (N-terminal fimbrillin protein)</td>
<td rowspan="2" valign="top">
<italic>P. gingivalis</italic>
</td>
<td rowspan="2" align="char" valign="top">22.3</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">Secreted</td>
</tr>
<tr>
<td rowspan="2" valign="top">FimA (C-terminal fimbrillin protein)</td>
<td rowspan="2" valign="top">
<italic>P. gingivalis</italic>
</td>
<td rowspan="2" align="char" valign="top">20.0</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">Secreted</td>
</tr>
<tr>
<td valign="top">IncA (inclusion membrane)</td>
<td valign="top">
<italic>C. psittaci</italic>
</td>
<td align="char" valign="top">40.1</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">CWP-2 (cyst wall protein)</td>
<td valign="top">
<italic>Giardia</italic>
sp.</td>
<td align="char" valign="top">40.0</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">L1 (early protein)</td>
<td valign="top">Canine oral papillomavirus</td>
<td align="char" valign="top">10.5</td>
<td valign="top">Intra</td>
</tr>
<tr>
<td valign="top">NY-ESO-1 (testicular tumor protein)</td>
<td valign="top">
<italic>H. sapiens</italic>
</td>
<td align="char" valign="top">12.9</td>
<td valign="top">Anchored</td>
</tr>
<tr>
<td valign="top">SEB (enterotoxin B)</td>
<td valign="top">
<italic>S. aureus</italic>
</td>
<td align="char" valign="top">27.4</td>
<td valign="top">Anchored</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec>
<label>2.4</label>
<title>Animal immunization</title>
<p>
<italic>S. gordonii</italic>
can readily colonize mice, rats, and monkeys as well as humans. Hence, the ability of recombinant BCV to induce an immune response can be examined in several animal models. The first demonstration that
<italic>S. gordonii</italic>
could successfully induce a mucosal and systemic immune response to foreign antigens was presented in experiments performed by Medaglini et al.
<xref rid="bib14" ref-type="bibr">[14]</xref>
. Expression of the hornet venom allergen Ag5.2 as a fusion protein to the anchor region of the M6 protein of
<italic>S. pyogenes</italic>
induced a significant increase in Ag5.2-specific salivary and lung IgA as well as an increase in systemic IgG in mice.</p>
<p>Several additional studies have shown that a variety of antigens expressed on the surface of
<italic>S. gordonii</italic>
are immunogenic when delivered to mice or monkeys by either the systemic or mucosal routes
<xref rid="bib15" ref-type="bibr">[15]</xref>
,
<xref rid="bib16" ref-type="bibr">[16]</xref>
,
<xref rid="bib17" ref-type="bibr">[17]</xref>
,
<xref rid="bib18" ref-type="bibr">[18]</xref>
,
<xref rid="bib19" ref-type="bibr">[19]</xref>
,
<xref rid="bib20" ref-type="bibr">[20]</xref>
,
<xref rid="bib21" ref-type="bibr">[21]</xref>
,
<xref rid="bib22" ref-type="bibr">[22]</xref>
. Immunization of rabbits with live or heat-killed
<italic>S. gordonii</italic>
expressing domains of the
<italic>Porphyromonas gingivalis</italic>
fimbrillin protein or the
<italic>Bordetella</italic>
S1 pertussis toxin induced antibodies specific for the encoded antigens
<xref rid="bib18" ref-type="bibr">[18]</xref>
,
<xref rid="bib23" ref-type="bibr">[23]</xref>
. In addition to inducing potent humoral immune responses, recombinant
<italic>S. gordonii</italic>
can be internalized by human and mouse dendritic cells and its encoded antigens presented by MHC Class II molecules
<xref rid="bib24" ref-type="bibr">[24]</xref>
as well as MHC class I molecules
<xref rid="bib25" ref-type="bibr">[25]</xref>
. Most importantly, the potential for recombinant
<italic>S. gordonii</italic>
to be developed as a safe vaccine vector was supported by the finding that immunization of mice with
<italic>S. gordonii</italic>
expressing tetanus toxin fragment C (TTFC) induced protection from a lethal challenge with 50 LD
<sub>50</sub>
of tetanus toxin
<xref rid="bib26" ref-type="bibr">[26]</xref>
. Moreover,
<italic>S. gordonii</italic>
recombinants expressing FimA, the major subunit protein of
<italic>P. gingivalis</italic>
fimbriae, induced strong serum IgG and salivary IgA antibody responses, and protected against subsequent
<italic>P. gingivalis</italic>
-induced alveolar bone loss in germ free rats
<xref rid="bib27" ref-type="bibr">[27]</xref>
.</p>
</sec>
<sec>
<label>2.5</label>
<title>Human clinical trials</title>
<p>Two Phase I human clinical trials (total 150 subjects) were conducted at the Center for Vaccine Development, University of Maryland, School of Medicine, Baltimore, MD, to determine the time to eradication (spontaneous and antibiotic-induced) of a strain of
<italic>S. gordonii</italic>
that was experimentally implanted into the nose and mouth of healthy volunteers. These studies showed that antibiotic treatment cleared the implanted strain from subjects within a few days, and subjects receiving no antibiotic treatment were colonized for up to 28 days. Overall, the administration of
<italic>S. gordonii</italic>
to human volunteers was well tolerated (K. Kotloff, manuscript in preparation).</p>
</sec>
</sec>
<sec>
<label>3</label>
<title>An example: BCV/smallpox vaccine</title>
<sec>
<label>3.1</label>
<title>Smallpox as a BW pathogen</title>
<p>Smallpox was the most destructive disease in recorded history having killed, crippled, or disfigured nearly 1/10 of all humankind. In the 20th century alone, more than 300 million people succumbed to the disease. Variola virus, the causative agent of smallpox, is extremely infectious. It is usually acquired by inhalation of aerosol droplets spread by infected individuals. Variola major, a highly virulent form of smallpox, can cause death rates as high as 30%. The disease has a number of features that make it an “ideal” agent of bioterrorism (
<xref rid="tbl3" ref-type="table">Table 3</xref>
). Although smallpox is of paramount concern, one should not neglect other potential orthopoxvirus pathogens. For example, there have been several recent incursions of monkeypox virus into the human population. Such an event transpired in the Midwest in the summer of 2003 when prairie dogs sold as pets became infected with the monkeypox virus through contact with Gambian giant rats and other rodents. Over 70 people became ill during this outbreak
<xref rid="bib28" ref-type="bibr">[28]</xref>
. Another more chilling scenario is the possibility that a laboratory strain of vaccinia virus or cowpox virus could be genetically engineered to produce a toxin to convert it into a potent pathogen
<xref rid="bib29" ref-type="bibr">[29]</xref>
. Fortunately, orthopoxviruses are highly related at the DNA level (e.g. 90% between variola and vaccinia) making it likely that any vaccine developed would stimulate immunity to this entire group of viruses
<xref rid="bib30" ref-type="bibr">[30]</xref>
.
<table-wrap position="float" id="tbl3">
<label>Table 3</label>
<caption>
<p>Attributes of smallpox as a biowarfare pathogen</p>
</caption>
<table frame="hsides" rules="groups">
<tbody>
<tr>
<td valign="top">Easy to grow</td>
<td valign="top">Susceptible populace</td>
</tr>
<tr>
<td valign="top">No cold chain</td>
<td valign="top">Vaccine side-effects</td>
</tr>
<tr>
<td valign="top">Respiratory spread</td>
<td valign="top">No safe antiviral drug</td>
</tr>
<tr>
<td valign="top">Highly infectious</td>
<td valign="top">10–14 day prodrome</td>
</tr>
<tr>
<td valign="top">Psychological effects</td>
<td valign="top">Potential global catastrophe</td>
</tr>
<tr>
<td valign="top">Environmental stability</td>
<td valign="top">Other poxviruses</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec>
<label>3.2</label>
<title>Existing vaccine/problems</title>
<p>Smallpox was eliminated from the US in the 1960s and subsequently, routine prophylactic immunization was discontinued. As a result, we now have a population that is highly susceptible to orthopoxvirus infection. However, mass immunization of the populace is not advisable as a response to the potential threat of bioterrorism because of the risk of serious complications from vaccination with the currently available vaccine. These potentially fatal complications include postvaccinial encephalitis, myopericarditis, progressive vaccinia, fetal vaccinia, and eczema vaccinatum (in addition to several other less serious complications). The need for a new, safe smallpox vaccine is significant.</p>
<p>A great deal of recent research has focused on the development of attenuated live vaccinia virus, mainly for use as recombinant vaccine delivery systems. One such virus is the modified vaccinia virus Ankara (MVA). Several studies show promising results as to the ability of MVA and other attenuated vaccinia to induce both humoral and cell-mediated immune responses against vaccinia and heterologous antigens
<xref rid="bib31" ref-type="bibr">[31]</xref>
,
<xref rid="bib32" ref-type="bibr">[32]</xref>
,
<xref rid="bib33" ref-type="bibr">[33]</xref>
,
<xref rid="bib34" ref-type="bibr">[34]</xref>
,
<xref rid="bib35" ref-type="bibr">[35]</xref>
,
<xref rid="bib36" ref-type="bibr">[36]</xref>
,
<xref rid="bib37" ref-type="bibr">[37]</xref>
. It should be noted that although the MVA genome has deletions in many of the known poxvirus immunomodulatory genes, it still retains the ability to express a large number of viral gene products of unknown biological activity. Furthermore, MVA recombinants are being widely developed as therapeutic vaccines against cancers. Widespread vaccination of the populace could induce immunity against the MVA virus itself and thus limit its usability as an anti-cancer vector. Therefore, these attenuated vaccinia strains may not be as useful as hoped as a smallpox vaccine for the general population.</p>
</sec>
<sec>
<label>3.3</label>
<title>Candidate antigens</title>
<p>Unlike many other viruses, VV produces many virion forms, all of which appear to be infectious. The molecular details of poxvirus assembly and differentiation are thought to be as follows: After (or concurrent with) viral DNA replication, progeny DNA molecules, viral enzymes, and structural proteins coalesce to form pre-virion particles
<xref rid="bib38" ref-type="bibr">[38]</xref>
. These particles acquire two membranes by budding through the intermediate compartment (between the endoplasmic reticulum and the Golgi) to become infectious intracellular mature virus (IMV). A portion of the IMV subsequently becomes enveloped by two additional membranes as it passes through the trans-Golgi network. This form of virus is called the intracellular enveloped virus (IEV). Following migration to the cell surface, the outermost IEV membrane fuses with the plasma membrane to give rise to enveloped virus (EV)
<xref rid="bib39" ref-type="bibr">[39]</xref>
. The EV can either remain associated with the cell as a cell-associated enveloped virus, (CEV) or can be released into the external medium as extracellular enveloped virus (EEV)
<xref rid="bib40" ref-type="bibr">[40]</xref>
.</p>
<p>When developing a strategy for designing a vaccine against smallpox, it is important to consider the different forms of this family of poxvirus. The EEV form of the virus is important for the long range dissemination of the virus within the host while the IMV form is thought to be important for transmitting infection between hosts
<xref rid="bib40" ref-type="bibr">[40]</xref>
,
<xref rid="bib41" ref-type="bibr">[41]</xref>
. Thus, a suitable smallpox vaccine must be effective against both forms of this virus. For this reason, several VV proteins that were chosen as BCV vaccine candidate proteins are associated with the IMV form of the virus while others are associated only with the EEV forms. Other criteria required for the candidate subunit VV proteins were one or more of the following: (1) Does the candidate elicit humoral or cell-mediated immune responses? (2) Have the antibodies specific for the proteins been shown to be protective in animal models? (3) Can the parenterally delivered purified VV protein elicit protection? and (4) Does the induction of a cell-mediated response by delivery of these genes in a DNA vaccine confer at least partial protection? Based on these criteria several vaccinia proteins were chosen as promising candidates for the commensal smallpox vaccine. Some of these proteins and their characteristics are listed in
<xref rid="tbl4" ref-type="table">Table 4</xref>
.
<table-wrap position="float" id="tbl4">
<label>Table 4</label>
<caption>
<p>Potential VV antigens for use in a subunit vaccine</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top">VV protein</th>
<th valign="top">Function</th>
<th valign="top">IMV or EEV</th>
<th valign="top">Immune response</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top">L1R</td>
<td valign="top">IMV attachment and penetration</td>
<td valign="top">IMV</td>
<td valign="top">Strong humoral response; antibodies protective</td>
</tr>
<tr>
<td valign="top">D8L</td>
<td valign="top">Binds chondroitin sulfate on host cells</td>
<td valign="top">EEV</td>
<td valign="top">Strong humoral and cellular response</td>
</tr>
<tr>
<td valign="top">A27L</td>
<td valign="top">Virus-cell attachment and fusion: cell–cell spread</td>
<td valign="top">IMV</td>
<td valign="top">Protein protective; cellular immune response</td>
</tr>
<tr>
<td valign="top">A33R</td>
<td valign="top">Generation of actin-containing microvilli; cell–cell spread</td>
<td valign="top">EEV</td>
<td valign="top">Protein, DNA and antibodies protective</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Other possible alternatives include B5R, A4L, A10L and F13L.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec>
<label>3.4</label>
<title>BCV/VV recombinants</title>
<p>DNA encoding the VV Copenhagen proteins A27L, L1R, F13L, D8L, A33R, and A4L was cloned into the
<italic>S. gordonii</italic>
chromosome as described above. Expression of these proteins from
<italic>S. gordonii</italic>
was tested by streak blot Western analysis using antibodies specific for the M protein portion of the fusion protein
<xref rid="bib11" ref-type="bibr">[11]</xref>
. Streak blot analysis tests for the surface expression of the heterologous proteins as whole bacteria are transferred to the nitrocellulose membrane. The VV A27L, F13L, and A4L fusion proteins were expressed at high levels (
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
); however, expression of D8L, L1R, and A33R was very low (not shown). These three proteins contain large hydrophobic regions that could interfere with the processing and anchoring mechanism, or secretion through the membrane of
<italic>S. gordonii</italic>
. When these hydrophobic regions were deleted,
<italic>S. gordonii</italic>
was able to efficiently express the truncated proteins.
<fig id="fig4">
<label>Fig. 4</label>
<caption>
<p>Expression of VV/M protein fusions in
<italic>S. gordonii.</italic>
Recombinant clones expressing the indicated full-length or deleted VV proteins, or the
<italic>S. pyogenes</italic>
M protein alone, were streaked onto a bacterial plate, lifted onto a nitrocellulose membrane and probed with monospecific antisera to the M protein to verify surface expression of fusion protein.</p>
</caption>
<graphic xlink:href="gr4"></graphic>
</fig>
</p>
</sec>
<sec>
<label>3.5</label>
<title>Animal immunization</title>
<p>
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
indicates that immunoreactive VV proteins can be expressed by
<italic>S. gordonii</italic>
. Preliminary experiments using the BCV∷A27L VV recombinants indicate that BALB/c mice inoculated either subcutaneously or intranasally had significant levels of A27L-specific serum IgG as well as salivary IgG and IgA antibodies. In addition, neutralizing antibodies (antibodies capable of inhibiting vaccinia virus-infection of tissue culture cells) were present in the serum of vaccinated animals. Additional studies using other BCV/VV recombinants are in progress and will include challenge studies to assess whether the recombinants are capable of inducing protective immunity against vaccinia virus infection.</p>
<p>The BALB/c mouse model for vaccinia virus challenge is an excellent system in which to study vaccines for their potential to prevent smallpox. However, because of the high degree of homology among the orthopoxvirus, several additional animal models using other orthopoxvirus can also provide important information. Smallpox is a respiratory pathogen acquired by aerosolized virus. Cowpox virus can efficiently infect BALB/c mice by aerosol administration and, as such, can be used to evaluate the efficacy of smallpox vaccines in preventing lethal respiratory infections. Perhaps the most rigorous model for testing candidate smallpox vaccines is the monkeypox model used in Rhesus macaques. Monkeypox is an orthopoxvirus that infects monkeys and sometimes humans and is over 85% homologous to the variola major genome
<xref rid="bib42" ref-type="bibr">[42]</xref>
. This model has also been used to evaluate the efficacy of vaccines against smallpox.</p>
</sec>
</sec>
<sec>
<label>4</label>
<title>Concluding remarks</title>
<sec>
<label>4.1</label>
<title>Challenges facing BW vaccine development</title>
<p>Regardless of the technology employed, commercial development of vaccines against potential biowarfare pathogens will be a challenge for a number of reasons. First there will be the need to access sufficient federal funding to support the work. Given the political nature of the funding process, it is not known how long, or to what level funding will be available. Second, there is the difficulty of obtaining the pathogens themselves, given the recent legislation regulating their use. Third, there is the paucity of BSL-3 and BSL-4 laboratories available to use for the animal challenge experiments, as well as the experts to conduct the experiments. Fourth, there are the unanswered regulatory questions of what will be required in order to license a vaccine for human use. And finally, the potential market for a developed product must be considered. Who will be the consumer and how will they pay for the costs of the vaccine and its development? Regardless of the challenges, these are important goals in our defensive armature and it is hoped that the scientific, governmental and regulatory agencies will be able to effectively work together to make them a reality.</p>
</sec>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jackson</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Ramsay</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Christensen</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Beaton</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Ramshaw</surname>
<given-names>I.A.</given-names>
</name>
</person-group>
<article-title>Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox</article-title>
<source>J. Virol.</source>
<volume>75</volume>
<year>2001</year>
<fpage>1205</fpage>
<lpage>1210</lpage>
<pub-id pub-id-type="pmid">11152493</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donnelly</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Ulmer</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>DNA vaccines</article-title>
<source>Dev. Biol. Stand.</source>
<volume>95</volume>
<year>1998</year>
<fpage>43</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">9855413</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>DNA vaccines: a review</article-title>
<source>J. Intern. Med.</source>
<volume>253</volume>
<year>2003</year>
<fpage>402</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">12653868</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glenn</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Kenney</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Ellingsworth</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Frech</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Hammond</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Zoeteweij</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin</article-title>
<source>Expert Rev. Vaccines</source>
<volume>2</volume>
<year>2003</year>
<fpage>253</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">12899576</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Guebre-Xabier</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Glenn</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<article-title>Transcutaneous immunization: an emerging route of immunization and potent immunostimulation strategy</article-title>
<source>Crit. Rev. Ther. Drug Carr. Syst.</source>
<volume>18</volume>
<year>2001</year>
<fpage>503</fpage>
<lpage>526</lpage>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mason</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Warzecha</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mor</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Arntzen</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<article-title>Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine</article-title>
<source>Trends Mol. Med.</source>
<volume>8</volume>
<year>2002</year>
<fpage>324</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="pmid">12114111</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGhee</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Mestecky</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dertzbaugh</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Eldridge</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Hirasawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kiyono</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>The mucosal immune system: from fundamental concepts to vaccine development</article-title>
<source>Vaccine</source>
<volume>10</volume>
<year>1992</year>
<fpage>75</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">1539467</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liljeqvist</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines</article-title>
<source>J. Biotechnol.</source>
<volume>73</volume>
<year>1999</year>
<fpage>1</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">10483112</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medina</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Guzman</surname>
<given-names>C.A.</given-names>
</name>
</person-group>
<article-title>Use of live bacterial vaccine vectors for antigen delivery: potential and limitations</article-title>
<source>Vaccine</source>
<volume>19</volume>
<year>2001</year>
<fpage>1573</fpage>
<lpage>1580</lpage>
<pub-id pub-id-type="pmid">11166877</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schneewind</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Model</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fischetti</surname>
<given-names>V.A.</given-names>
</name>
</person-group>
<article-title>Sorting of protein A to the staphylococcal cell wall</article-title>
<source>Cell</source>
<volume>2</volume>
<year>1992</year>
<fpage>267</fpage>
<lpage>281</lpage>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>K.F.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Erickson</surname>
<given-names>B.W.</given-names>
</name>
<name>
<surname>Hollingshead</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Fischetti</surname>
<given-names>V.A.</given-names>
</name>
</person-group>
<article-title>Immunochemical localization and amino acid sequences of crossreactive epitopes within the group A streptococcal M6 protein</article-title>
<source>J. Exp. Med.</source>
<volume>4</volume>
<year>1986</year>
<fpage>1226</fpage>
<lpage>1238</lpage>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Byrd</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Bolken</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>K.F.</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Vella</surname>
<given-names>A.T.</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>King</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Blackwood</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Hruby</surname>
<given-names>D.E.</given-names>
</name>
</person-group>
<article-title>Biological consequences of antigen and cytokine co-expression by recombinant
<italic>Streptococcus gordonii</italic>
vaccine vectors</article-title>
<source>Vaccine</source>
<volume>20</volume>
<year>2002</year>
<fpage>2197</fpage>
<lpage>2205</lpage>
<pub-id pub-id-type="pmid">12009273</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bolken</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Franke</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>G.O.</given-names>
</name>
<name>
<surname>Hruby</surname>
<given-names>D.E.</given-names>
</name>
</person-group>
<article-title>Identification of an intragenic integration site for foreign gene expression in recombinant
<italic>Streptococcus gordonii</italic>
strains</article-title>
<source>Appl. Microbiol. Biotechnol.</source>
<volume>55</volume>
<year>2001</year>
<fpage>192</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="pmid">11330713</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>King</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Fischetti</surname>
<given-names>V.A.</given-names>
</name>
</person-group>
<article-title>Mucosal systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacterium
<italic>Streptococcus gordonii</italic>
after oral colonization</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<volume>92</volume>
<year>1995</year>
<fpage>6868</fpage>
<lpage>6872</lpage>
<pub-id pub-id-type="pmid">7624334</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rush</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Sestini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Commensal bacteria as vectors for mucosal vaccines against sexually transmitted diseases: vaginal colonization with recombinant streptococci induces local and systemic antibodies in mice</article-title>
<source>Vaccine</source>
<volume>15</volume>
<year>1997</year>
<fpage>1330</fpage>
<lpage>1337</lpage>
<pub-id pub-id-type="pmid">9302739</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Fabio</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rush</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Corrias</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Panzini</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Pace</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Verani</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Titti</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Vaginal immunization of Cynomolgus monkeys with
<italic>Streptococcus gordonii</italic>
expressing HIV-1 and HPV 16 antigens</article-title>
<source>Vaccine</source>
<volume>16</volume>
<year>1998</year>
<fpage>485</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="pmid">9491503</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Oggioni</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Manganelli</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Fischetti</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Fenoglio</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Valle</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Kunkl</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Manca</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Human T-helper cell recognition of an immunodominant epitope of HIV-1 gp120 expressed on the surface of
<italic>Streptococcus gordonii</italic>
</article-title>
<source>Vaccine</source>
<volume>12</volume>
<year>1994</year>
<fpage>1071</fpage>
<lpage>1077</lpage>
<pub-id pub-id-type="pmid">7998415</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Halperin</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>MacArthur</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Oral colonization and immune responses to
<italic>Streptococcus gordonii</italic>
expressing a pertussis toxin S1 fragment in mice</article-title>
<source>FEMS Microbiol. Lett.</source>
<volume>208</volume>
<year>2002</year>
<fpage>175</fpage>
<lpage>178</lpage>
<pub-id pub-id-type="pmid">11959433</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maggi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Oggioni</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bianchi Bandinelli</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Soldateschi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wiesmuller</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>C.P.</given-names>
</name>
<name>
<surname>Valensin</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Expression of measles virus antigens in
<italic>Streptococcus gordonii</italic>
</article-title>
<source>New Microbiol.</source>
<volume>23</volume>
<year>2000</year>
<fpage>119</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="pmid">10872681</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maggi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Spinosa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ricci</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Oggioni</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Genetic engineering of
<italic>Streptococcus gordonii</italic>
for the simultaneous display of two heterologous proteins at the bacterial surface</article-title>
<source>FEMS Microbiol. Lett.</source>
<volume>210</volume>
<year>2002</year>
<fpage>135</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="pmid">12023090</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oggioni</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Manganelli</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Contorni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tommasino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Immunization of mice by oral colonization with live recombinant commensal streptococci</article-title>
<source>Vaccine</source>
<volume>13</volume>
<year>1995</year>
<fpage>775</fpage>
<lpage>779</lpage>
<pub-id pub-id-type="pmid">7483795</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oggioni</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Romano</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Peruzzi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Maggi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lozzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bracci</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zazzi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Manca</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Valensin</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Antigenicity and immunogenicity of the V3 domain of HIV type 1 glycoprotein 120 expressed on the surface of
<italic>Streptococcus gordonii</italic>
</article-title>
<source>AIDS Res. Hum. Retrovir.</source>
<volume>15</volume>
<year>1999</year>
<fpage>451</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="pmid">10195755</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nagata</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hamada</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sojar</surname>
<given-names>H.T.</given-names>
</name>
<name>
<surname>Hruby</surname>
<given-names>D.E.</given-names>
</name>
<name>
<surname>Kuramitsu</surname>
<given-names>H.K.</given-names>
</name>
<name>
<surname>Genco</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Expression of functional
<italic>Porphyromonas gingivalis</italic>
fimbrillin polypeptide domains on the surface of
<italic>Streptococcus gordonii</italic>
</article-title>
<source>Appl. Environ. Microbiol.</source>
<volume>62</volume>
<year>1996</year>
<fpage>3933</fpage>
<lpage>3938</lpage>
<pub-id pub-id-type="pmid">8899979</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corinti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cavani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rescigno</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ricciardi-Castagnoli</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Girolomoni</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Human dendritic cells very efficiently present a heterologous antigen expressed on the surface of recombinant Gram-positive bacteria to CD4+ T lymphocytes</article-title>
<source>J. Immunol.</source>
<volume>163</volume>
<year>1999</year>
<fpage>3029</fpage>
<lpage>3036</lpage>
<pub-id pub-id-type="pmid">10477566</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rescigno</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Citterio</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Thery</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rittig</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Amigorena</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ricciardi-Castagnoli</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<volume>95</volume>
<year>1998</year>
<fpage>5229</fpage>
<lpage>5234</lpage>
<pub-id pub-id-type="pmid">9560258</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medaglini</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ciabattini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Spinosa</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Maggi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Marcotte</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Oggioni</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Immunization with recombinant
<italic>Streptococcus gordonii</italic>
expressing tetanus toxin fragment C confers protection from lethal challenge in mice</article-title>
<source>Vaccine</source>
<volume>19</volume>
<year>2001</year>
<fpage>1931</fpage>
<lpage>1939</lpage>
<pub-id pub-id-type="pmid">11228363</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Honma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Hruby</surname>
<given-names>D.E.</given-names>
</name>
<name>
<surname>Genco</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Oral immunization with recombinant
<italic>Streptococcus gordonii</italic>
expressing
<italic>Porphyromonas gingivalis</italic>
FimA domains</article-title>
<source>Infect. Immun.</source>
<volume>69</volume>
<year>2001</year>
<fpage>2928</fpage>
<lpage>2934</lpage>
<pub-id pub-id-type="pmid">11292708</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>CDC</surname>
</name>
</person-group>
<article-title>Update: multistate outbreak of monkeypox—Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin</article-title>
<source>Morb. Mortal. Wkly. Rep.</source>
<volume>52</volume>
<year>2003</year>
<fpage>642</fpage>
<lpage>646</lpage>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hruby</surname>
<given-names>D.E.</given-names>
</name>
</person-group>
<article-title>Vaccinia virus vectors: new strategies for producing recombinant vaccines</article-title>
<source>Clin. Microbiol. Rev.</source>
<volume>3</volume>
<year>1990</year>
<fpage>153</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="pmid">2187593</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esposito</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>Orthopoxvirus DNA: a comparison of restriction profiles and maps</article-title>
<source>Virology</source>
<volume>143</volume>
<year>1985</year>
<fpage>230</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">2998003</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramirez</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Gherardi</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Esteban</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine</article-title>
<source>J. Virol.</source>
<volume>74</volume>
<year>2000</year>
<fpage>923</fpage>
<lpage>933</lpage>
<pub-id pub-id-type="pmid">10623755</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wyatt</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Shors</surname>
<given-names>S.T.</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model</article-title>
<source>Vaccine</source>
<volume>14</volume>
<year>1996</year>
<fpage>1451</fpage>
<lpage>1458</lpage>
<pub-id pub-id-type="pmid">8994321</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sutter</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wyatt</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Foley</surname>
<given-names>P.L.</given-names>
</name>
<name>
<surname>Bennink</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus</article-title>
<source>Vaccine</source>
<volume>12</volume>
<year>1994</year>
<fpage>1032</fpage>
<lpage>1040</lpage>
<pub-id pub-id-type="pmid">7975844</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holzer</surname>
<given-names>G.W.</given-names>
</name>
<name>
<surname>Remp</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Antoine</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pfeiderer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Enzersberger</surname>
<given-names>O.M.</given-names>
</name>
<name>
<surname>Emsenhuber</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hammerle</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gruber</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Urban</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Falkner</surname>
<given-names>F.G.</given-names>
</name>
<name>
<surname>Dorner</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Highly efficient induction of protective immunity by a vaccinia virus vector defective in late gene expression</article-title>
<source>J. Virol.</source>
<volume>73</volume>
<year>1999</year>
<fpage>4536</fpage>
<lpage>4542</lpage>
<pub-id pub-id-type="pmid">10233911</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durbin</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Wyatt</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Siew</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>B.R.</given-names>
</name>
</person-group>
<article-title>The immunogenicity and efficacy of intranasally or parenterally administered replication-deficient vaccinia-parainfluenza virus type 3 recombinants in rhesus monkeys</article-title>
<source>Vaccine</source>
<volume>16</volume>
<year>1998</year>
<fpage>1324</fpage>
<lpage>1330</lpage>
<pub-id pub-id-type="pmid">9682397</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carroll</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Overwijk</surname>
<given-names>W.W.</given-names>
</name>
<name>
<surname>Chamberlain</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Rosenberg</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Restifo</surname>
<given-names>N.P.</given-names>
</name>
</person-group>
<article-title>Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model</article-title>
<source>Vaccine</source>
<volume>15</volume>
<year>1997</year>
<fpage>387</fpage>
<lpage>394</lpage>
<pub-id pub-id-type="pmid">9141209</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belyakov</surname>
<given-names>I.M.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Strober</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Berzofsky</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<volume>96</volume>
<year>1999</year>
<fpage>4512</fpage>
<lpage>4517</lpage>
<pub-id pub-id-type="pmid">10200293</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<label>38</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
</person-group>
<chapter-title>Poxviridae and their replication</chapter-title>
<person-group person-group-type="editor">
<name>
<surname>Fields</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Knipe</surname>
<given-names>D.</given-names>
</name>
</person-group>
<series>Virology, 2nd edn</series>
<volume>vol. 2</volume>
<year>1990</year>
<publisher-name>Raven Press</publisher-name>
<publisher-loc>New York</publisher-loc>
<fpage>2079</fpage>
<lpage>2111</lpage>
</element-citation>
</ref>
<ref id="bib39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Payne</surname>
<given-names>L.G.</given-names>
</name>
<name>
<surname>Kristenson</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine</article-title>
<source>J. Virol.</source>
<volume>32</volume>
<year>1979</year>
<fpage>614</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="pmid">501802</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blasco</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Role of cell-associated enveloped vaccinia virus in cell-to-cell spread</article-title>
<source>J. Virol.</source>
<volume>66</volume>
<year>1992</year>
<fpage>4170</fpage>
<lpage>4179</lpage>
<pub-id pub-id-type="pmid">1602540</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Vanderplasschen</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Extracellular enveloped vaccinia virus. Entry, egress, and evasion</article-title>
<source>Adv. Exp. Med. Biol.</source>
<volume>440</volume>
<year>1998</year>
<fpage>395</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="pmid">9782308</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shchelkunov</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Totmenin</surname>
<given-names>A.V.</given-names>
</name>
<name>
<surname>Babkin</surname>
<given-names>I.V.</given-names>
</name>
<name>
<surname>Safronov</surname>
<given-names>P.F.</given-names>
</name>
<name>
<surname>Ryazankina</surname>
<given-names>O.I.</given-names>
</name>
<name>
<surname>Petroy</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Gutorov</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Uvarova</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Mikheev</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Sisler</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Esposito</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Jahrling</surname>
<given-names>P.B.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sandakhchiev</surname>
<given-names>L.S.</given-names>
</name>
</person-group>
<article-title>Human monkeypox and smallpox viruses: genomic comparison</article-title>
<source>FEBS Lett.</source>
<volume>509</volume>
<year>2001</year>
<fpage>66</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="pmid">11734207</pub-id>
</element-citation>
</ref>
</ref-list>
<ack>
<title>Acknowledgments</title>
<p>Over the years, development of the SPEX/BCV delivery system has been supported by DARPA, the National Institutes of Health, and SIGA Technologies. Special thanks to Kevin Jones and Elva Van Devender for critical reading of the manuscript, and to Lindsay Brown for technical assistance.</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001674  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001674  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021