Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001463 ( Pmc/Corpus ); précédent : 0014629; suivant : 0014640 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of a Dose‐Response Model for SARS Coronavirus</title>
<author>
<name sortKey="Watanabe, Toru" sort="Watanabe, Toru" uniqKey="Watanabe T" first="Toru" last="Watanabe">Toru Watanabe</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bartrand, Timothy A" sort="Bartrand, Timothy A" uniqKey="Bartrand T" first="Timothy A." last="Bartrand">Timothy A. Bartrand</name>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weir, Mark H" sort="Weir, Mark H" uniqKey="Weir M" first="Mark H." last="Weir">Mark H. Weir</name>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Omura, Tatsuo" sort="Omura, Tatsuo" uniqKey="Omura T" first="Tatsuo" last="Omura">Tatsuo Omura</name>
<affiliation>
<nlm:aff id="a3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haas, Charles N" sort="Haas, Charles N" uniqKey="Haas C" first="Charles N." last="Haas">Charles N. Haas</name>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmc">7169223</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169223</idno>
<idno type="RBID">PMC:7169223</idno>
<idno type="doi">10.1111/j.1539-6924.2010.01427.x</idno>
<idno type="pmid">NONE</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">001463</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001463</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Development of a Dose‐Response Model for SARS Coronavirus</title>
<author>
<name sortKey="Watanabe, Toru" sort="Watanabe, Toru" uniqKey="Watanabe T" first="Toru" last="Watanabe">Toru Watanabe</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bartrand, Timothy A" sort="Bartrand, Timothy A" uniqKey="Bartrand T" first="Timothy A." last="Bartrand">Timothy A. Bartrand</name>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weir, Mark H" sort="Weir, Mark H" uniqKey="Weir M" first="Mark H." last="Weir">Mark H. Weir</name>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Omura, Tatsuo" sort="Omura, Tatsuo" uniqKey="Omura T" first="Tatsuo" last="Omura">Tatsuo Omura</name>
<affiliation>
<nlm:aff id="a3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haas, Charles N" sort="Haas, Charles N" uniqKey="Haas C" first="Charles N." last="Haas">Charles N. Haas</name>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Risk Analysis</title>
<idno type="ISSN">0272-4332</idno>
<idno type="eISSN">1539-6924</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In order to develop a dose‐response model for SARS coronavirus (SARS‐CoV), the pooled data sets for infection of transgenic mice susceptible to SARS‐CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta‐Poisson and exponential models with the maximum likelihood method. The exponential model (
<italic>k</italic>
= 4.1 × l0
<sup>2</sup>
) could describe the dose‐response relationship of the pooled data sets. The beta‐Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS‐CoV was calculated and compared with those of other coronaviruses. The does of SARS‐CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV‐229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS‐CoV for apartment residents during the outbreak, which was back‐calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose‐response model for SARS‐CoV at the present and would enable us to understand the possibility for reemergence of SARS.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V Thiel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V Thiel</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Risk Anal</journal-id>
<journal-id journal-id-type="iso-abbrev">Risk Anal</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1539-6924</journal-id>
<journal-id journal-id-type="publisher-id">RISA</journal-id>
<journal-title-group>
<journal-title>Risk Analysis</journal-title>
</journal-title-group>
<issn pub-type="ppub">0272-4332</issn>
<issn pub-type="epub">1539-6924</issn>
<publisher>
<publisher-name>Blackwell Publishing Inc</publisher-name>
<publisher-loc>Malden, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmc">7169223</article-id>
<article-id pub-id-type="doi">10.1111/j.1539-6924.2010.01427.x</article-id>
<article-id pub-id-type="publisher-id">RISA1427</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Development of a Dose‐Response Model for SARS Coronavirus</article-title>
<alt-title alt-title-type="left-running-head">
<bold>Watanabe 
<italic>et al.</italic>
</bold>
</alt-title>
<alt-title alt-title-type="right-running-head">
<bold>Dose‐Response Model for SARS‐CoV</bold>
</alt-title>
</title-group>
<contrib-group>
<contrib id="cr1" contrib-type="author" corresp="yes">
<name>
<surname>Watanabe</surname>
<given-names>Toru</given-names>
</name>
<xref ref-type="aff" rid="a1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="a2">
<sup>2</sup>
</xref>
</contrib>
<contrib id="cr2" contrib-type="author">
<name>
<surname>Bartrand</surname>
<given-names>Timothy A.</given-names>
</name>
<xref ref-type="aff" rid="a2">
<sup>2</sup>
</xref>
</contrib>
<contrib id="cr3" contrib-type="author">
<name>
<surname>Weir</surname>
<given-names>Mark H.</given-names>
</name>
<xref ref-type="aff" rid="a2">
<sup>2</sup>
</xref>
</contrib>
<contrib id="cr4" contrib-type="author">
<name>
<surname>Omura</surname>
<given-names>Tatsuo</given-names>
</name>
<xref ref-type="aff" rid="a3">
<sup>3</sup>
</xref>
</contrib>
<contrib id="cr5" contrib-type="author">
<name>
<surname>Haas</surname>
<given-names>Charles N.</given-names>
</name>
<xref ref-type="aff" rid="a2">
<sup>2</sup>
</xref>
</contrib>
</contrib-group>
<aff id="a1">
<label>
<sup>1</sup>
</label>
Environmental Science Center, University of Tokyo, Tokyo, Japan.</aff>
<aff id="a2">
<label>
<sup>2</sup>
</label>
Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA.</aff>
<aff id="a3">
<label>
<sup>3</sup>
</label>
Department of Civil and Environmental Engineering, Tohoku University, Sendai, Japan.</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
Address correspondence to Toru Watanabe, Environmental Science Center, University of Tokyo, 7‐13‐1 Hongo, Bunkyo‐ku, Tokyo 113‐0033, Japan; tel: +81‐3‐5841‐0644;
<email>watanabe@esc.u-tokyo.ac.jp</email>
.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>20</day>
<month>5</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="ppub">
<month>7</month>
<year>2010</year>
</pub-date>
<volume>30</volume>
<issue>7</issue>
<issue-id pub-id-type="doi">10.1111/risk.2010.30.issue-7</issue-id>
<fpage>1129</fpage>
<lpage>1138</lpage>
<permissions>
<copyright-statement content-type="article-copyright">© 2010 Society for Risk Analysis</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:RISA-30-1129.pdf"></self-uri>
<abstract>
<p>In order to develop a dose‐response model for SARS coronavirus (SARS‐CoV), the pooled data sets for infection of transgenic mice susceptible to SARS‐CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta‐Poisson and exponential models with the maximum likelihood method. The exponential model (
<italic>k</italic>
= 4.1 × l0
<sup>2</sup>
) could describe the dose‐response relationship of the pooled data sets. The beta‐Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS‐CoV was calculated and compared with those of other coronaviruses. The does of SARS‐CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV‐229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS‐CoV for apartment residents during the outbreak, which was back‐calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose‐response model for SARS‐CoV at the present and would enable us to understand the possibility for reemergence of SARS.</p>
</abstract>
<kwd-group>
<kwd id="k1">Dose‐response model</kwd>
<kwd id="k2">maximum likelihood method</kwd>
<kwd id="k3">SARS coronavirus</kwd>
<kwd id="k4">SARS outbreak in Hong Kong</kwd>
</kwd-group>
<counts>
<count count-type="links-crossref" count="69"></count>
<fig-count count="2"></fig-count>
<table-count count="4"></table-count>
<equation-count count="2"></equation-count>
<ref-count count="37"></ref-count>
<page-count count="10"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>July 2010</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="ss1">
<title>1. INTRODUCTION</title>
<p>The causal pathogen of severe acute respiratory syndrome (SARS) is a newly isolated coronavirus (SARS‐CoV) that first appeared in late 2002 in Guangdong Province, People's Republic of China. In the spring of 2003, a large outbreak of this severe pneumonia occurred in Hong Kong and rapidly spread throughout the world. Ultimately, 8,096 cases of SARS were identified in 29 countries or areas and 774 patients reportedly died.
<sup>(</sup>
<xref rid="b1" ref-type="ref">
<sup>1</sup>
</xref>
<sup>)</sup>
The rapid transmission and high mortality rate made SARS a global threat for which no efficacious therapy was available and empirical strategies had to be used to treat the patients.</p>
<p>Since the SARS pandemic in 2003, developments of vaccines
<sup>(</sup>
<xref rid="b2" ref-type="ref">
<sup>2</sup>
</xref>
<sup>)</sup>
and antivirals
<sup>(</sup>
<xref rid="b3" ref-type="ref">
<sup>3</sup>
</xref>
<sup>)</sup>
have been rapidly proceeding for treatment of SARS patients and prevention of its reemergence. In parallel, mathematical models expressing the SARS propagation from person to person have been developed to discuss countermeasures against such a disease transmission from community to national scales.
<sup>(</sup>
<xref rid="b4" ref-type="ref">
<sup>4</sup>
</xref>
,
<xref rid="b5" ref-type="ref">
<sup>5</sup>
</xref>
<sup>)</sup>
These models successfully explained the epidemic curve by estimating model parameters of infectious rate, removal rate, and so on. However, these models did not incorporate primary exposures or transmission via environmental reservoirs and the model parameters would not be consistent and highly influenced by numerous factors in environment and human behavior. Such models with parameters estimated on a case‐by‐case basis are of little use in any outbreaks occurring in other situations. On the other hand, dose‐response models to characterize the interaction between human and virus seems robust and applicable to assessing the risk of SARS via any possible routes of infection (e.g., aerosols containing virus particles, surface or hand contamination). Nevertheless, no dose‐response model for SARS‐CoV is available at the moment mainly due to unavailability of data sets challenging humans or animals with this virus.</p>
<p>In this article, we develop a dose‐response model for SARS‐CoV based on two data sets for infection of transgenic mice susceptible to SARS‐CoV and infection of mice with murine hepatitis virus strain 1 (MHV‐1) that may be a clinically relevant model of SARS.
<sup>(</sup>
<xref rid="b6" ref-type="ref">
<sup>6</sup>
</xref>
<sup>)</sup>
And also, as an example of model application, we analyze the epidemiological data of a SARS outbreak that occurred at an apartment complex in Hong Kong in 2003 with the developed model.</p>
</sec>
<sec id="ss2">
<title>2. METHODS</title>
<sec id="ss2-1">
<title>2.1. Data Sets for Model Development</title>
<p>Coronaviruses cause acute and chronic respiratory, enteric, and central nervous system (CNS) diseases in many species of animals including humans. Previous to the emergence of SARS, there were two prototype human coronavirues OC43 and 229E, both etiologic agents of the common cold. SARS was the first example of serious illness in humans caused by coronaviruses.
<sup>(</sup>
<xref rid="b7" ref-type="ref">
<sup>7</sup>
</xref>
<sup>)</sup>
Since the outbreak in 2003, many researchers have worked to elucidate structures of viral genes and proteins, mechanisms of infection and replication, and its pathogenesis. Coronaviruses are divided into three groups (groups I to III) based on the genome sequences and SARS‐CoV may be a member of group II as well as murine hepatitis virus (MHV), bovine coronavirus, porcine hemagglutinating encephalomyelitis virus (HEV), equine coronavirus, and human coronavirues OC43 and NL63, which also cause respiratory infections. Among them, MHV that infects both mice and rats often has been studied as a suitable model of human coronavirus diseases.</p>
<p>Coronaviruses are generally restricted in their host range and viruses associated with disease in one species can be limited in their ability to replicate in other species.
<sup>(</sup>
<xref rid="b8" ref-type="ref">
<sup>8</sup>
</xref>
<sup>)</sup>
SARS‐CoV differs from this general pattern. This virus infects and replicates in mice, ferrets, hamsters, cats, and several species of nonhuman primates (cynomolgus and rhesus macaques, African green monkeys, and marmosets). Nevertheless, most attempts to reproduce completely human clinical disease and pathological findings in these animals failed. On the other hand, De Albuquerque
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b9" ref-type="ref">
<sup>9</sup>
</xref>
<sup>)</sup>
demonstrated that intranasal infection of A/J mice with MHV‐1 produced pulmonary pathological features of SARS. From the fact that all MHV‐1‐infected A/J mice developed progressive interstitial pneumonitis, including dense macrophage infiltrates, giant cells, and hyaline membranes, resulting in death of all animals, they concluded that A/J mice infected with MHV‐1 would be a potentially useful small animal model of human SARS that defines its pathogenesis and suggests treatment strategies. We employed the data set (2 in
<xref rid="t1" ref-type="table">Table I</xref>
) challenging A/J mice with MHV‐1 as a surrogate data set for SARS‐CoV. The data set was obtained by monitoring the survival of four groups of the mice (
<italic>n</italic>
= 5 per group) for 21 days after intranasal inoculation with MHV‐1 at 5, 50, 500, and 5,000 PFU, respectively. In other approaches, transgenic (tg) mice expressing the human receptor for SARS‐CoV, which are very susceptible to SARS‐CoV, have been developed and used for pathogenesis studies.
<sup>(</sup>
<xref rid="b10" ref-type="ref">
<sup>10</sup>
</xref>
<sup>)</sup>
DeDiego
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b11" ref-type="ref">
<sup>11</sup>
</xref>
<sup>)</sup>
reported a data set for infection of the tg mice with recombinant SARS‐CoV (1 in
<xref rid="t1" ref-type="table">Table I</xref>
). In their experiment, four groups of the tg mice (
<italic>n</italic>
= 2 to 6 per group) were intranasally inoculated with 240, 800, 2,400, and 12,000 PFU of rSARS‐CoV, respectively, and the survival was monitored 13 days. The details of data sets 1 and 2 are shown in the
<xref rid="ss6" ref-type="sec">Appendix</xref>
.</p>
<table-wrap id="t1" xml:lang="en" orientation="portrait" position="float">
<label>Table I</label>
<caption>
<p>Data Sets on Dose‐Response Relationship for Coronavirus Infection via Intranasal Route*</p>
</caption>
<table frame="hsides" rules="groups">
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<thead valign="bottom">
<tr>
<th rowspan="2" valign="bottom" align="left" colspan="1">No.</th>
<th rowspan="2" valign="bottom" align="left" colspan="1">Virus</th>
<th rowspan="2" valign="bottom" align="left" colspan="1">Genetic Group</th>
<th colspan="2" align="center" style="border-bottom:solid 1px #000000" valign="bottom" rowspan="1">Host</th>
<th rowspan="2" valign="bottom" align="left" colspan="1">Reported Symptom</th>
<th rowspan="2" valign="bottom" align="left" colspan="1">Number of Doses</th>
<th rowspan="2" valign="bottom" align="center" colspan="1">Endpoint of Response</th>
<th rowspan="2" valign="bottom" align="left" colspan="1">Reference</th>
</tr>
<tr>
<th align="left" valign="bottom" rowspan="1" colspan="1">Animal</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Age</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 1</td>
<td align="left" valign="top" rowspan="1" colspan="1">rSARS‐CoV**</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">tgMicet†</td>
<td align="left" valign="top" rowspan="1" colspan="1">?</td>
<td align="left" valign="top" rowspan="1" colspan="1">R,CNS</td>
<td align="left" valign="top" rowspan="1" colspan="1">4 (1††)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b11" ref-type="ref">11</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 2</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐1</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">6 to 8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">R</td>
<td align="left" valign="top" rowspan="1" colspan="1">4(2)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b9" ref-type="ref">9</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 3</td>
<td align="left" valign="top" rowspan="1" colspan="1">HCoV‐229E</td>
<td align="left" valign="top" rowspan="1" colspan="1">1</td>
<td align="left" valign="top" rowspan="1" colspan="1">Humans</td>
<td align="left" valign="top" rowspan="1" colspan="1">18 to 50 years</td>
<td align="left" valign="top" rowspan="1" colspan="1">R</td>
<td align="left" valign="top" rowspan="1" colspan="1">4(4)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Illness (Cold)</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b12" ref-type="ref">12</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 4</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐S</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">3 days</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS,H</td>
<td align="left" valign="top" rowspan="1" colspan="1">4(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b13" ref-type="ref">13</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 5</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐S</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS,H</td>
<td align="left" valign="top" rowspan="1" colspan="1">4(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b13" ref-type="ref">13</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 6</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐S</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">2 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS,H</td>
<td align="left" valign="top" rowspan="1" colspan="1">4(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b13" ref-type="ref">13</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 7</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐2</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">3 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">H</td>
<td align="left" valign="top" rowspan="1" colspan="1">3(0)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b14" ref-type="ref">14</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 8</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐2</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">H</td>
<td align="left" valign="top" rowspan="1" colspan="1">3(0)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b14" ref-type="ref">14</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 9</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS</td>
<td align="left" valign="top" rowspan="1" colspan="1">4(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b15" ref-type="ref">15</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">10</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS</td>
<td align="left" valign="top" rowspan="1" colspan="1">5(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b15" ref-type="ref">15</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">11</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS</td>
<td align="left" valign="top" rowspan="1" colspan="1">5(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b15" ref-type="ref">15</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">12</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rats</td>
<td align="left" valign="top" rowspan="1" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS</td>
<td align="left" valign="top" rowspan="1" colspan="1">4(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b16" ref-type="ref">16</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">13</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rats</td>
<td align="left" valign="top" rowspan="1" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS</td>
<td align="left" valign="top" rowspan="1" colspan="1">3(1)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b16" ref-type="ref">16</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">14</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rats</td>
<td align="left" valign="top" rowspan="1" colspan="1">8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">CNS</td>
<td align="left" valign="top" rowspan="1" colspan="1">3(2)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b16" ref-type="ref">16</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">15</td>
<td align="left" valign="top" rowspan="1" colspan="1">IBVA‐5968</td>
<td align="left" valign="top" rowspan="1" colspan="1">3</td>
<td align="left" valign="top" rowspan="1" colspan="1">Chicks</td>
<td align="left" valign="top" rowspan="1" colspan="1">9 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">R,K</td>
<td align="left" valign="top" rowspan="1" colspan="1">6(4)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Death</td>
<td align="left" valign="top" rowspan="1" colspan="1">
<xref rid="b17" ref-type="ref">17</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1_note145">
<p>R = respiratory; CNS = central nervous system; H = hepatitis; K = kidney damage.</p>
</fn>
<fn id="t1_note146">
<p>*Only data set 15 was obtained by intratracheal inoculation.</p>
</fn>
<fn id="t1_note147">
<p>**Recombinant SARS‐CoV.</p>
</fn>
<fn id="t1_note148">
<p>
<sup></sup>
Transgenic mice expressing the SARS‐CoV receptor.</p>
</fn>
<fn id="t1_note149">
<p>
<sup>††</sup>
Number of dose points corresponding to other than 0 or 100% response.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The endpoint was death of mice for both data sets 1 and 2. Since neither infection nor illness of mice has been analyzed in these experiments, we assumed that all mice with the illness died. In general, mortality of animals with severe illness like SARS would be dependent on their physical strength, which indicates a potential of recovery from the illness, and availability of medical treatment. As described above, a high mortality was observed during the SARS outbreak, although the patients were treated with some empirical strategies. In the experiments using mice, higher mortality can be expected since the mice developing illness had never received any medical treatments and basically the physical strength of mice would be much lower than that of humans. This could support the above assumption and therefore we decided to use the data sets 1 and 2 to develop the dose‐response model with the endpoint of human illness, that is, SARS.</p>
<p>In order to compare the infectivity of SARS‐CoV with other coronaviruses, we also collected data sets (3 to 15 in
<xref rid="t1" ref-type="table">Table I</xref>
) challenging humans and animals with HCoV‐229E, MHV, HEV, and infectious bronchitis virus (IBV), which had been studied for many years before the emergence of SARS. Except for one data set (15 via tracheal inoculation), all these data sets were obtained by the intranasal inoculation, which is probably the primary route of infection with SARS‐CoV.</p>
</sec>
<sec id="ss2-2">
<title>2.2. Fitting of Dose‐Response Models to Data Sets</title>
<p>Each data set in
<xref rid="t1" ref-type="table">Table I</xref>
was fitted to two types of dose‐response model, that is, exponential and beta‐Poisson models,
<sup>(</sup>
<xref rid="b18" ref-type="ref">
<sup>18</sup>
</xref>
<sup>)</sup>
with maximum likelihood method and goodness‐of‐fit to the models compared based on their likelihoods. The general forms of these models are as follows:
<disp-formula id="m1">
<graphic xlink:href="RISA-30-1129-e001.jpg" id="nlm-graphic-1" position="float" orientation="portrait"></graphic>
</disp-formula>
where
<italic>p</italic>
(
<italic>d</italic>
) is the risk of illness at the dose of
<italic>d</italic>
; and
<italic>k</italic>
,
<italic>N</italic>
<sub>50</sub>
, and α are parameters specific for the pathogen. Parameter
<italic>k</italic>
in the exponential model equals the reciprocal of the probability that a single pathogen will initiate the response. Parameters
<italic>N</italic>
<sub>50</sub>
and α in the beta‐Poisson model are the median dose to get the response and the exponential fitting parameter, respectively.</p>
<p>The beta‐Poisson model was fitted to only four data sets 2, 3, 14, and 15 since it is not meaningful to fit this model to data sets including less than two dose points corresponding to other than 0 or 100% response. The model fitting was done via maximum likelihood estimation, using a quasi‐Newton method, implemented in the package of R version 2.6.2 for Windows.
<sup>(</sup>
<xref rid="b19" ref-type="ref">
<sup>19</sup>
</xref>
<sup>)</sup>
The sensitivity analysis of parameters of the best‐fitted model was performed with 10,000 bootstrap trials by a program written on R to estimate the doses corresponding to 10% and 50% responses (ID
<sub>10</sub>
and ID
<sub>50</sub>
).</p>
</sec>
<sec id="ss2-3">
<title>2.3. Model Application: SARS Outbreak at an Apartment Building in Hong Kong</title>
<p>During the pandemic of SARS in 2003, Hong Kong was the hardest hit reporting area with 1,755 cases and 299 deaths in a population of 6.7 million.
<sup>(</sup>
<xref rid="b1" ref-type="ref">
<sup>1</sup>
</xref>
<sup>)</sup>
The large community outbreak at an apartment complex named Amoy Gardens affected more than 300 among 20,000 residents in the early stage of the outbreak in Hong Kong. According to the report by Department of Health (DOH), Hong Kong SAR, the outbreak was begun with an index case who visited his family living on the 16th floor in Block E of Amoy Gardens.
<sup>(</sup>
<xref rid="b20" ref-type="ref">
<sup>20</sup>
</xref>
,
<xref rid="b21" ref-type="ref">
<sup>21</sup>
</xref>
<sup>)</sup>
He stayed overnight and used the toilet there. DOH concluded that the sewage contamination associated with the index case (and other infected persons) excreting coronavirus that gained entry to households through the bathroom floor drain with dried U‐traps was the primary cause of the SARS outbreak. The building's ventilation system made a significant contribution to the entry of virus into households. According to McKinney
<italic>et al.</italic>
,
<sup>(</sup>
<xref rid="b22" ref-type="ref">
<sup>22</sup>
</xref>
<sup>)</sup>
many residents had installed high‐powered fans in their small bathrooms with capacities 6 to 10 times higher than the required capacity and the fans created large negative pressure and drew air from waste pipes. The WHO environmental team verified that sewer gas and aerosolized droplets, which the hydraulic action caused by flushing toilets generated, were being drawn into the bathrooms from the waste pipe system. Although DOH mentioned other possible causes of the SARS outbreak, such as person‐to‐person transmission, vectors acting as mechanical carriers for the virus, and environmental contamination, we assumed that all cases were infected via the airborne transmission, reported as the primary cause, in our model application.</p>
<p>DOH investigated epidemiological data of 321 confirmed SARS cases. Although the detailed data are not reported in the literature, the location of flats for 99 cases in Block E has been published in the modeling study by Li
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b21" ref-type="ref">
<sup>21</sup>
</xref>
<sup>)</sup>
Since the number of residents at each flat during the outbreak has not been investigated, their group assumed that each flat housed four persons, which was the largest number of cases in any one flat, and calculated the risk of illness, equivalent to the attack rate, as the number of cases divided by the assumed number of residents.
<sup>(</sup>
<xref rid="b23" ref-type="ref">
<sup>23</sup>
</xref>
<sup>)</sup>
By using the dose‐response model developed here, we estimated the dose (
<italic>d</italic>
) of SARS‐CoV for cases in Block E from the attack rate (
<italic>p</italic>
(
<italic>d</italic>
)). The dose estimated on the above assumption might be lower than the true value because number of residents in some flats would be below four and there were possibly unoccupied flats. We also calculated the attack rate as the number of flats having at least one case divided by the total number of flats and estimated the dose, which would be higher than the real value, from the attack rate.</p>
</sec>
</sec>
<sec id="ss3">
<title>3. RESULTS</title>
<sec id="ss3-1">
<title>3.1. Dose‐Response Model for SARS‐CoV</title>
<p>
<xref rid="t2" ref-type="table">Table II</xref>
shows the result of fitting models to the data sets. The fits of the beta‐Poisson model to data sets 2, 3, 14, and 15 could not be rejected on statistical grounds, as indicated by p
<sub>fit</sub>
values greater than 0.05. Similarly, the exponential model provided statistically significant fits to all data sets except 14 and 15. As for data sets 2 and 3, both beta‐Poisson and exponential models were acceptable. We tested the null hypothesis that the beta‐Poisson model provided a statistically significant improvement in fit to these data sets rather than a more parsimonious (exponential) model by comparing the difference of variance between two models against the critical value (3.84) on the chi‐square distribution with 1 degree of freedom. As the result, since the hypothesis was rejected for both data sets, the exponential model was used for the analysis of viral infectivity in the latter part.</p>
<table-wrap id="t2" xml:lang="en" orientation="portrait" position="float">
<label>Table II</label>
<caption>
<p>Parameters and Likelihood of Dose‐Response Models Fitted to Data Sets on Coronavirus Infection</p>
</caption>
<table frame="hsides" rules="groups">
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="left" span="1"></col>
<thead valign="bottom">
<tr>
<th rowspan="2" valign="bottom" align="left" colspan="1">No.</th>
<th rowspan="2" valign="bottom" align="center" colspan="1">Virus</th>
<th colspan="2" align="center" style="border-bottom:solid 1px #000000" valign="bottom" rowspan="1">Host</th>
<th colspan="4" align="center" style="border-bottom:solid 1px #000000" valign="bottom" rowspan="1">Beta‐Poisson(BP)</th>
<th colspan="3" align="center" style="border-bottom:solid 1px #000000" valign="bottom" rowspan="1">Exponential (EXP)</th>
<th rowspan="2" valign="bottom" align="left" colspan="1">Better Fit Model**</th>
<th rowspan="2" valign="bottom" align="left" colspan="1">Unit of Dose</th>
</tr>
<tr>
<th align="left" valign="bottom" rowspan="1" colspan="1">Species</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Age</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">ln α</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">ln
<italic>N</italic>
<sub>50</sub>
</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Deviance</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">
<italic>P</italic>
<sub>fit</sub>
</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">ln
<italic>k</italic>
</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Deviance</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">
<italic>P</italic>
<sub>fit</sub>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 1</td>
<td align="left" valign="top" rowspan="1" colspan="1">rSARS‐CoV</td>
<td align="left" valign="top" rowspan="1" colspan="1">tgMice</td>
<td align="left" valign="top" rowspan="1" colspan="1">?</td>
<td align="left" valign="top" rowspan="1" colspan="1">‐*</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">5.82</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.97</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.81</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 2</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐1</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">6 to 8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 1.23</td>
<td align="left" valign="top" rowspan="1" colspan="1">5.71</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.54</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.76</td>
<td align="left" valign="top" rowspan="1" colspan="1">6.15</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.61</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.89</td>
<td align="left" valign="top" rowspan="1" colspan="1">EXP</td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">p†</td>
<td align="left" valign="top" rowspan="1" colspan="1">SARS‐CoV</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">?</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 6.50</td>
<td align="left" valign="top" rowspan="1" colspan="1">5.64</td>
<td align="left" valign="top" rowspan="1" colspan="1">1.75</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.94</td>
<td align="left" valign="top" rowspan="1" colspan="1">6.01</td>
<td align="left" valign="top" rowspan="1" colspan="1">1.75</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.97</td>
<td align="left" valign="top" rowspan="1" colspan="1">EXP</td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 3</td>
<td align="left" valign="top" rowspan="1" colspan="1">HCoV‐229E</td>
<td align="left" valign="top" rowspan="1" colspan="1">Humans</td>
<td align="left" valign="top" rowspan="1" colspan="1">18 to 50 years</td>
<td align="left" valign="top" rowspan="1" colspan="1">−0.21</td>
<td align="left" valign="top" rowspan="1" colspan="1">2.38</td>
<td align="left" valign="top" rowspan="1" colspan="1">1.42</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.49</td>
<td align="left" valign="top" rowspan="1" colspan="1">2.92</td>
<td align="left" valign="top" rowspan="1" colspan="1">2.31</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.51</td>
<td align="left" valign="top" rowspan="1" colspan="1">EXP</td>
<td align="left" valign="top" rowspan="1" colspan="1">TCD
<sub>50</sub>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 4</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐S</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">3 days</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">6.32</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.56</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.91</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 5</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐S</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">8.62</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.56</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.91</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 6</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐S</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">2 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">13.6</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.24</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.97</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 7</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">3 weeks</td>
<td colspan="7" align="center" valign="top" rowspan="1">(No death among 5 mice at doses from 7 × 10
<sup>2</sup>
to 7 × 10
<sup>4</sup>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 8</td>
<td align="left" valign="top" rowspan="1" colspan="1">MHV‐2</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">4 weeks</td>
<td colspan="7" align="center" valign="top" rowspan="1">(No death among 5 mice at doses from 6 × 10
<sup>3</sup>
to 6 × 10
<sup>5</sup>
)</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1"> 9</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">2.39</td>
<td align="left" valign="top" rowspan="1" colspan="1">0
<sup>††</sup>
</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">10</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">7.62</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.62</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.96</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">11</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">Mice</td>
<td align="left" valign="top" rowspan="1" colspan="1">8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">7.62</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.62</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.96</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">12</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rats</td>
<td align="left" valign="top" rowspan="1" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">3.08</td>
<td align="left" valign="top" rowspan="1" colspan="1">0
<sup>††</sup>
</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">13</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rats</td>
<td align="left" valign="top" rowspan="1" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">8.66</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.54</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.76</td>
<td align="left" valign="top" rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">14</td>
<td align="left" valign="top" rowspan="1" colspan="1">HEV‐67N</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rats</td>
<td align="left" valign="top" rowspan="1" colspan="1">8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">−1.04</td>
<td align="left" valign="top" rowspan="1" colspan="1">7.42</td>
<td align="left" valign="top" rowspan="1" colspan="1">1.97</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.16</td>
<td align="left" valign="top" rowspan="1" colspan="1">9.34</td>
<td align="left" valign="top" rowspan="1" colspan="1">6.36</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 0.04</td>
<td align="left" valign="top" rowspan="1" colspan="1">BP</td>
<td align="left" valign="top" rowspan="1" colspan="1">PFU</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">15</td>
<td align="left" valign="top" rowspan="1" colspan="1">IBVA‐5968</td>
<td align="left" valign="top" rowspan="1" colspan="1">Chicks</td>
<td align="left" valign="top" rowspan="1" colspan="1">9 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">−5.11</td>
<td align="left" valign="top" rowspan="1" colspan="1">109</td>
<td align="left" valign="top" rowspan="1" colspan="1">2.93</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.57</td>
<td align="left" valign="top" rowspan="1" colspan="1">11.4</td>
<td align="left" valign="top" rowspan="1" colspan="1">26.6</td>
<td align="left" valign="top" rowspan="1" colspan="1"><0.01</td>
<td align="left" valign="top" rowspan="1" colspan="1">BP</td>
<td align="left" valign="top" rowspan="1" colspan="1">CD
<sub>50</sub>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t2_note212">
<p>*Beta‐Poisson model was not fitted to data sets including less than two dose points corresponding to other than 0 or 100% response.</p>
</fn>
<fn id="t2_note213">
<p>**Beta‐Poisson model was employed if it provided a significant improvement of fit (
<italic>p</italic>
> 0.05) rather than exponential model.</p>
</fn>
<fn id="t2_note214">
<p>
<sup></sup>
Data set
<italic>p</italic>
pooled data sets 1 and 2.</p>
</fn>
<fn id="t2_note215">
<p>
<sup>††</sup>
Zero deviance means that all data were on the model.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The estimated parameter
<italic>k</italic>
in the exponential model for rSARS‐CoV (data set 1) was very close to that for MHV‐1 (data set 2). In order to decide whether these data sets could be pooled or not, the following statistic Δ was calculated and compared with the critical value (3.84) in the chi‐square distribution with 1 degree of freedom:
<sup>(</sup>
<xref rid="b18" ref-type="ref">
<sup>18</sup>
</xref>
<sup>)</sup>
<disp-formula id="m3">
<graphic xlink:href="RISA-30-1129-e002.jpg" id="nlm-graphic-3" position="float" orientation="portrait"></graphic>
</disp-formula>
where
<italic>Y</italic>
<sub>1</sub>
,
<italic>Y</italic>
<sub>2</sub>
, and
<italic>Y
<sub>p</sub>
</italic>
are deviances of fits of exponential model to data sets 1 and 2 and pooled data sets, respectively. As shown in
<xref rid="t2" ref-type="table">Table II</xref>
, we yielded ln
<italic>k</italic>
= 6.01 and
<italic>Y
<sub>p</sub>
</italic>
= 1.75 when the exponential model was fitted to the pooled data sets (data set
<italic>p</italic>
). The value of Δ (0.17) smaller than 3.84 indicated that data sets 1 and 2 could be pooled to
<italic>p</italic>
. Consequently, the exponential model (
<xref rid="f1" ref-type="fig">Fig. 1</xref>
) with
<italic>k</italic>
= 4.1 × 10
<sup>2</sup>
was employed as the dose‐response model for SARS due to intranasal infection.</p>
<fig fig-type="Figure" xml:lang="en" id="f1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Exponential dose‐response model fitted to the pooled data sets for SARS‐CoV.</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="RISA-30-1129-g001"></graphic>
</fig>
</sec>
<sec id="ss3-2">
<title>3.2. Infectivity of SARS‐CoV</title>
<p>
<xref rid="f2" ref-type="fig">Fig. 2</xref>
illustrates the doses (ID
<sub>10</sub>
and ID
<sub>50</sub>
) of SARS‐CoV and other coronaviruses corresponding to 10% and 50% responses calculated with the dose‐response models listed in
<xref rid="t2" ref-type="table">Table II</xref>
. ID
<sub>10</sub>
and ID
<sub>50</sub>
of SARS‐CoV were 43 (95% CI = 20 to 81 PFU) and 280 PFU (95% CI = 130 to 530 PFU), respectively. The doses (ID
<sub>10</sub>
= 2.0 TCD
<sub>50</sub>
; ID
<sub>50</sub>
= 13 TCD
<sub>50</sub>
) for HCoV‐229E seem relatively low; however, Schmidt
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b24" ref-type="ref">
<sup>24</sup>
</xref>
<sup>)</sup>
reported that the 50% endpoint assay was about 10 to 30 times less sensitive than the plaque assay with HCoV‐229E. Accordingly, the estimated infectivity of SARS‐CoV would be comparable to that of HCoV that causes a mild cold in humans. Similar infectivity was also observed in data sets of three‐day‐old mice infected with MHV‐S (data set 4) and eight‐week‐old rats infected with HEV‐67N (data set 14). These animal coronaviruses belong to the same genetic group as SARS‐CoV. The infectivity of coronavirus might be related to the viral evolution, although a lot of unknown factors exist. The effect of host age was observed in data sets for MHV‐S (data sets 4 to 6) and HEV‐67N (data sets 9 to 14) and it was obvious that young mice and rats are more susceptible than old ones. In contrast, infection among children and adolescents was relatively uncommon
<sup>(</sup>
<xref rid="b25" ref-type="ref">
<sup>25</sup>
</xref>
<sup>)</sup>
and the mortality of senior people was comparatively high in the SARS pandemic.
<sup>(</sup>
<xref rid="b26" ref-type="ref">
<sup>26</sup>
</xref>
<sup>)</sup>
This age‐dependency of human susceptibility to SARS‐CoV is different not only from other coronaviruses but also from other human respiratory viruses. Avian influenza A (H5N1) virus is a highly virulent respiratory virus like SARS‐CoV. The epidemiologic investigations show that this virus primarily infects young people and Goicoechea
<sup>(</sup>
<xref rid="b27" ref-type="ref">
<sup>27</sup>
</xref>
<sup>)</sup>
made a comment that the receptor recognized by this virus, which is expressed in the lower respiratory tract, may be expressed in the upper airway in children, increasing the risk of infection. In case of respiratory syncytial virus (SRV), another well‐known human respiratory virus, the serious forms of the disease (principally bronchiolitis and interstitial pneumonia) are found most frequently in infants under six months of age and the disease is progressively milder with increasing age.
<sup>(</sup>
<xref rid="b28" ref-type="ref">
<sup>28</sup>
</xref>
<sup>)</sup>
</p>
<fig fig-type="Figure" xml:lang="en" id="f2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Doses (ID
<sub>10</sub>
and ID
<sub>50</sub>
) of SARS‐CoV and other coronaviruses corresponding to 10 and 50% response. Error bars indicate 95% confident intervals.</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="RISA-30-1129-g002"></graphic>
</fig>
</sec>
<sec id="ss3-3">
<title>3.3. Back‐Calculation of Viral Dose for Residents at Amoy Gardens</title>
<p>The doses of SARS‐CoV for residents in Block E, Amoy Gardens, estimated based on the assumed number of residents and the number of affected flats, are described in
<xref rid="t3" ref-type="table">Table III</xref>
. As Yu
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b23" ref-type="ref">
<sup>23</sup>
</xref>
<sup>)</sup>
analyzed, the attack rate was dependent on the floor and the middle floors between levels 14 and 23 had the highest risk since the flat where the index case visited was located there. Therefore, the estimated dose of SARS‐CoV (63 to 160 PFU) for residents on the middle floor was also higher than the others. The estimated dose (42 to 117 PFU) for residents on the upper floor was slightly higher than that (16 to 49 PFU) on the lower floor. Li
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b21" ref-type="ref">
<sup>21</sup>
</xref>
<sup>)</sup>
explained the reason as that viral particles were probably transmitted with upflow air movements between flats in this block. He and his colleagues
<sup>(</sup>
<xref rid="b23" ref-type="ref">
<sup>23</sup>
</xref>
<sup>)</sup>
have confirmed through air modeling that the exhaust fans propelled virus‐laden air into an outside air shaft, where it was carried upward by natural air currents and into other flats on the upper floor through open windows. Based on our estimate of dose, this transmission mode appears highly plausible, although we have been unable to locate data on viral load in either fecal matter or wastewater.</p>
<table-wrap id="t3" xml:lang="en" orientation="portrait" position="float">
<label>Table III</label>
<caption>
<p>Estimated Dose of SARS‐CoV for Residents in Amoy Gardens During the Outbreak in 2003</p>
</caption>
<table frame="hsides" rules="groups">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<thead valign="bottom">
<tr>
<th colspan="5" align="left" valign="bottom" rowspan="1">(a) Estimation Based on the Assumed Number of Residents</th>
</tr>
<tr>
<th align="left" valign="bottom" rowspan="1" colspan="1">Floor (Level)</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Number of Reported Cases</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Number of Residents*</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Attack Rate</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Estimated Dose (PFU)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Lower (4–13)</td>
<td align="left" valign="top" rowspan="1" colspan="1">12</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 320</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.038</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 16</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Middle (14–23)</td>
<td align="left" valign="top" rowspan="1" colspan="1">46</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 320</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.144</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 63</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Upper (24–36)</td>
<td align="left" valign="top" rowspan="1" colspan="1">41</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 416</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.099</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 42</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Overall</td>
<td align="left" valign="top" rowspan="1" colspan="1">99</td>
<td align="left" valign="top" rowspan="1" colspan="1">1056</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.094</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 40</td>
</tr>
</tbody>
</table>
<table frame="hsides" rules="groups">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<thead valign="bottom">
<tr>
<th colspan="5" align="left" valign="bottom" rowspan="1">(b) Estimation Based on the Number of Affected Flats</th>
</tr>
<tr>
<th align="left" valign="bottom" rowspan="1" colspan="1">Floor (Level)</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Number of Affected Flats**</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Total Number of Flats</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Attack Rate</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Estimated Dose (PFU)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Lower (4–13)</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 9</td>
<td align="left" valign="top" rowspan="1" colspan="1">  80</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.113</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 49</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Middle (14–23)</td>
<td align="left" valign="top" rowspan="1" colspan="1">26</td>
<td align="left" valign="top" rowspan="1" colspan="1">  80</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.325</td>
<td align="left" valign="top" rowspan="1" colspan="1">160</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Upper (24–36)</td>
<td align="left" valign="top" rowspan="1" colspan="1">26</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 104</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.250</td>
<td align="left" valign="top" rowspan="1" colspan="1">117</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Overall</td>
<td align="left" valign="top" rowspan="1" colspan="1">61</td>
<td align="left" valign="top" rowspan="1" colspan="1"> 264</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.231</td>
<td align="left" valign="top" rowspan="1" colspan="1">107</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t3_note52">
<p>*Assumed that each flat has four residents.</p>
</fn>
<fn id="t3_note53">
<p>**Number of flats where at least one case was reported.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec id="ss4">
<title>4. DISCUSSION</title>
<sec id="ss4-1">
<title>4.1. Validation of Developed Model</title>
<p>Although we believe that there are no additional published data sets available for model development for SARS‐CoV other than those in
<xref rid="t1" ref-type="table">Table I</xref>
, partial information supporting our analysis has been provided by some researchers. Roberts
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b29" ref-type="ref">
<sup>29</sup>
</xref>
<sup>)</sup>
developed mouse‐adapted SARS‐CoV through 15 serial passages in the respiratory tract of young BALB/c mice and they observed the lethality of mice dependent on the dose of the virus. Mice receiving a dose higher than 10
<sup>3.9</sup>
TCID
<sub>50</sub>
of the virus died and the 50% lethal dose (LD
<sub>50</sub>
) was 10
<sup>4.6</sup>
TCID
<sub>50</sub>
. In contrast, ID
<sub>50</sub>
of 2.8 × 10
<sup>2</sup>
PFU estimated with the developed model is low. Since ordinary SARS‐CoV cannot cause the death of mice, there is a possibility that the virulence of the virus was still low even after its adaptation to mice.</p>
<p>Nagata
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b30" ref-type="ref">
<sup>30</sup>
</xref>
<sup>)</sup>
reported that cynomolgus monkeys inoculated intranasally with SARS‐CoV of 10
<sup>6</sup>
TCID
<sub>50</sub>
did not show any clinical sign and symptoms, while slight histopathological changes and virus antigen‐positive cells were detected. Kuiken
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b31" ref-type="ref">
<sup>31</sup>
</xref>
<sup>)</sup>
and McAuliffe
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b32" ref-type="ref">
<sup>32</sup>
</xref>
<sup>)</sup>
also demonstrated the pulmonary replication of SARS‐CoV without any severe symptoms in monkeys receiving intranasal inoculation of 10
<sup>6</sup>
TCID
<sub>50</sub>
viruses. The fact that as many as 10
<sup>6</sup>
viruses did not cause lethality in monkeys means that the susceptibility to this virus may be dependent on host species even within primates.</p>
<p>Of course, this model originated from data sets for mice not for humans. As Mizgerd and Skerrett
<sup>(</sup>
<xref rid="b33" ref-type="ref">
<sup>33</sup>
</xref>
<sup>)</sup>
pointed out, there are the differences between mice and humans relevant to pneumonia. However, since it is not realistic to obtain the data sets for human infection with SARS‐CoV by challenging to volunteers due to its high mortality, this model is still a valuable method to evaluate the risk of SARS. In prior work, it has been shown that data from animal experiments provide reasonable estimates for human susceptibility in inhaled pathogens.
<sup>(</sup>
<xref rid="b34" ref-type="ref">
<sup>34</sup>
</xref>
,
<xref rid="b35" ref-type="ref">
<sup>35</sup>
</xref>
<sup>)</sup>
</p>
</sec>
<sec id="ss4-2">
<title>4.2 New Findings About SARS Epidemic Through Model Applications</title>
<p>It is widely considered that SARS is a respiratory illness. However, SARS patients may also exhibit gastrointestinal symptoms, splenic atrophy, and lymphadenopathy.
<sup>(</sup>
<xref rid="b7" ref-type="ref">
<sup>7</sup>
</xref>
<sup>)</sup>
Among them, diarrhea is a very frequent finding in SARS patients (30% to 40% of patients).
<sup>(</sup>
<xref rid="b7" ref-type="ref">
<sup>7</sup>
</xref>
<sup>)</sup>
Cheng
<italic>et al.</italic>
<sup>(</sup>
<xref rid="b36" ref-type="ref">
<sup>36</sup>
</xref>
<sup>)</sup>
reported that geometric mean titer for SARS‐CoV in feces of patients ranged from 5.1 × 10
<sup>1</sup>
copies/mL over 23 days after the onset of illness (dpi) to 8.9 × 10
<sup>4</sup>
copies/mL between 12 and 14 dpi. Number of gene copies has not been related yet to the plaque‐forming capability of this virus; however, there is no doubt that a huge amount of infectious viruses was excreted from patients for a certain period. According to the DOH report, at the beginning of the outbreak in Block E, a part of infectious viruses excreted from the index case must have reached other households through the waste pipe and ventilation systems. Considering this virus transportation, we can imagine that residents at the households inhaled small doses of SARS‐CoV (
<xref rid="t3" ref-type="table">Table III</xref>
) as estimated here by model application, although there are several unknown factors such as virus dispersion and inactivation during transportation.</p>
</sec>
<sec id="ss4-3">
<title>4.3. Significance of Proposed Model for Preventing Reemerging SARS</title>
<p>The SARS pandemic was brought under control through a concerted global effort, and by July 5, 2003, no further human‐to‐human transmission took place. However, there are still several possibilities that might lead to the reemergence of SARS in humans.
<sup>(</sup>
<xref rid="b37" ref-type="ref">
<sup>37</sup>
</xref>
<sup>)</sup>
The potential source of SARS‐CoV might come from infected animals circulating in the geographical region, as highlighted by the four community‐acquired SARS cases between December 2003 and January 2004 in Guangdong, China. In these recent cases, fortunately, all patients only developed mild symptoms and secondary transmission did not occur since the animal virus had not fully adapted in humans yet. In addition to SARS‐CoV, two novel CoVs (HCoV‐NL63 and HCoV‐HKU1) that cause respiratory illness in humans were identified after the SARS outbreak. These facts indicate the possibility that a pandemic of SARS and other coronavirus infection may be brought by rapid viral evolution.</p>
</sec>
</sec>
<sec id="ss5">
<title>5. CONCLUSIONS</title>
<p>We proposed the exponential model with
<italic>k</italic>
= 4. 1 × 10
<sup>2</sup>
as a dose‐response model for SARS coronavirus (SARS‐CoV) based on the available data sets. With this model, the doses of SARS‐CoV corresponding to 10% and 50% responses (illness) were estimated at 43 PFU (95% CI = 20 to 81 PFU) and 280 PFU (95% CI = 130 to 530 PFU), respectively. The estimated infectivity of SARS‐CoV was comparable to those of HCoV‐229E, known as an agent of human common cold, and of some animal coronaviruses (MHV‐S and HEV‐67N) belonging to the same genetic group as SARS‐CoV.</p>
<p>The developed model was applied to the analysis of the epidemiological data of the SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. From the reported number of cases, it was revealed that the apartment residents would be exposed to a dose of SARS‐CoV between 16 and 160 PFU per person, which depends on the floor, during the outbreak.</p>
<p>Although the susceptibility to SARS‐CoV seems to be host‐dependent, the developed model is the sole dose‐response model for SARS‐CoV at the present and would help us predict the reemergence of SARS in the future.</p>
</sec>
</body>
<back>
<ack id="ss7">
<title>ACKNOWLEDGMENTS</title>
<p>We extend our special thanks to Ms. Stephy Y. M. Chan (the University of Hong Kong) for helping us collect the information on the SARS outbreak in Hong Kong. We acknowledge the support of the Japan Society for the Promotion of Science (JSPS) to Toru Watanabe, under JSPS Postdoctoral Fellowships for Research Abroad, and that of the Center for Advancing Microbial Risk Assessment (CAMRA) to Timothy A. Bartrand, Mark H. Weir, and Charles N. Haas. CAMRA is a U.S. EPA/Department of Homeland Security (DHS) Cooperative Center of Excellence funded under U.S. EPA STAR Grant R83236201. This work does not express official policy of either U.S. EPA or DHS.</p>
</ack>
<ref-list id="ss8">
<title>REFERENCES</title>
<ref id="b1">
<label>1</label>
<mixed-citation publication-type="miscellaneous" id="cit1">
<collab collab-type="authors">World Health Organization</collab>
.
<article-title>Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003</article-title>
. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/sars/country/table2004_04_21/en/index.html">http://www.who.int/csr/sars/country/table2004_04_21/en/index.html</ext-link>
, Accessed on August 17,
<year>2008</year>
. </mixed-citation>
</ref>
<ref id="b2">
<label>2</label>
<mixed-citation publication-type="book" id="cit2">
<string-name>
<surname>Rockx</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Baric</surname>
<given-names>RS</given-names>
</string-name>
.
<chapter-title>Grand challenges in human coronavirus vaccine development</chapter-title>
In
<person-group person-group-type="editor">
<name name-style="western">
<surname>Thiel</surname>
<given-names>V</given-names>
</name>
</person-group>
(ed).
<source xml:lang="en">Coronaviruses, Molecular and Cellular Biology</source>
. Norfolk, UK :
<publisher-name>Caister Academic Press</publisher-name>
,
<year>2007</year>
. </mixed-citation>
</ref>
<ref id="b3">
<label>3</label>
<mixed-citation publication-type="book" id="cit3">
<string-name>
<surname>Keyaerts</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Vijgen</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ranst</surname>
<given-names>MV</given-names>
</string-name>
.
<chapter-title>Current status of antiviral severe acute respiratory syndrome coronavirus research</chapter-title>
In
<person-group person-group-type="editor">
<name name-style="western">
<surname>Thiel</surname>
<given-names>V</given-names>
</name>
</person-group>
(ed).
<source xml:lang="en">Coronaviruses, Molecular and Cellular Biology</source>
. Norfolk, UK :
<publisher-name>Caister Academic Press</publisher-name>
,
<year>2007</year>
. </mixed-citation>
</ref>
<ref id="b4">
<label>4</label>
<mixed-citation publication-type="journal" id="cit4">
<string-name>
<surname>Dye</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Gay</surname>
<given-names>N</given-names>
</string-name>
.
<article-title>Modeling the SARS epidemic</article-title>
.
<source xml:lang="en">Science</source>
,
<year>2003</year>
;
<volume>300</volume>
:
<fpage>1884</fpage>
<lpage>1885</lpage>
.
<pub-id pub-id-type="pmid">12766208</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<label>5</label>
<mixed-citation publication-type="journal" id="cit5">
<string-name>
<surname>Ng</surname>
<given-names>TW</given-names>
</string-name>
,
<string-name>
<surname>Turinici</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Danchin</surname>
<given-names>A</given-names>
</string-name>
.
<article-title>A double epidemic model for the SARS propagation</article-title>
.
<source xml:lang="en">BMC Infectious Diseases</source>
,
<year>2003</year>
;
<volume>3</volume>
: Art.
<fpage>19</fpage>
.
<pub-id pub-id-type="pmid">12964944</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<label>6</label>
<mixed-citation publication-type="book" id="cit6">
<string-name>
<surname>De Albuquerque</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Baig</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Xuezhong</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Shalev</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Phillips</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Habal</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Leibowitz</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>McGilvray</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Butany</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Fish</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Levy</surname>
<given-names>G</given-names>
</string-name>
.
<chapter-title>Murine hepatitis virus strain 1 as a model for severe acute respiratory distress syndrome (SARS)</chapter-title>
In
<person-group person-group-type="editor">
<name name-style="western">
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Holmes</surname>
<given-names>KV</given-names>
</name>
</person-group>
(eds).
<source xml:lang="en">The Nidoviruses: Toward Control of SARS and Other Nidovirus Diseases</source>
. New York :
<publisher-name>Springer</publisher-name>
,
<year>2006</year>
. </mixed-citation>
</ref>
<ref id="b7">
<label>7</label>
<mixed-citation publication-type="journal" id="cit7">
<string-name>
<surname>Weiss</surname>
<given-names>SR</given-names>
</string-name>
,
<string-name>
<surname>Navas‐Martin</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus</article-title>
.
<source xml:lang="en">Microbiology and Molecular Biology Reviews</source>
,
<year>2005</year>
;
<volume>69</volume>
(
<issue>4</issue>
):
<fpage>635</fpage>
<lpage>664</lpage>
.
<pub-id pub-id-type="pmid">16339739</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<label>8</label>
<mixed-citation publication-type="journal" id="cit8">
<string-name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Roberts</surname>
<given-names>A</given-names>
</string-name>
.
<article-title>Is there an ideal animal model for SARS?</article-title>
<source xml:lang="en">Trends in Microbiology</source>
,
<year>2006</year>
;
<volume>14</volume>
(
<issue>7</issue>
):
<fpage>299</fpage>
<lpage>303</lpage>
.
<pub-id pub-id-type="pmid">16759866</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<label>9</label>
<mixed-citation publication-type="journal" id="cit9">
<string-name>
<surname>De Albuquerque</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Baig</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>He</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Rowe</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Habal</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Shalev</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Downey</surname>
<given-names>GP</given-names>
</string-name>
,
<string-name>
<surname>Gorczynski</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Butany</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Leibowitz</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Weiss</surname>
<given-names>SR</given-names>
</string-name>
,
<string-name>
<surname>McGilvray</surname>
<given-names>ID</given-names>
</string-name>
,
<string-name>
<surname>Phillips</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Fish</surname>
<given-names>EN</given-names>
</string-name>
,
<string-name>
<surname>Levy</surname>
<given-names>GA</given-names>
</string-name>
.
<article-title>Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice</article-title>
.
<source xml:lang="en">Journal of Virology</source>
,
<year>2006</year>
;
<volume>80</volume>
:
<fpage>10382</fpage>
<lpage>10394</lpage>
.
<pub-id pub-id-type="pmid">17041219</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<label>10</label>
<mixed-citation publication-type="journal" id="cit10">
<string-name>
<surname>McCray</surname>
<given-names>PB</given-names>
<suffix>Jr.</suffix>
</string-name>
,
<string-name>
<surname>Pewe</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Wohlford‐Lenane</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Hickey</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Manzel</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Netland</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Jia</surname>
<given-names>HP</given-names>
</string-name>
,
<string-name>
<surname>Halabi</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Sigmund</surname>
<given-names>CD</given-names>
</string-name>
,
<string-name>
<surname>Meyerholz</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Kirby</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Look</surname>
<given-names>DC</given-names>
</string-name>
,
<string-name>
<surname>Perlman</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Lethal infection of K18‐hACE2 mice infected with severe acute respiratory syndrome coronavirus</article-title>
.
<source xml:lang="en">Journal of Virology</source>
,
<year>2007</year>
;
<volume>81</volume>
(
<issue>2</issue>
):
<fpage>813</fpage>
<lpage>821</lpage>
.
<pub-id pub-id-type="pmid">17079315</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<label>11</label>
<mixed-citation publication-type="journal" id="cit11">
<string-name>
<surname>DeDiego</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Pewe</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Alvarez</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Rejas</surname>
<given-names>MT</given-names>
</string-name>
,
<string-name>
<surname>Perlman</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE‐2 transgenic mice</article-title>
.
<source xml:lang="en">Virology</source>
,
<year>2008</year>
;
<volume>376</volume>
:
<fpage>379</fpage>
<lpage>389</lpage>
.
<pub-id pub-id-type="pmid">18452964</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<label>12</label>
<mixed-citation publication-type="journal" id="cit12">
<string-name>
<surname>Bradburne</surname>
<given-names>AF</given-names>
</string-name>
,
<string-name>
<surname>Bynoe</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Tyrrell</surname>
<given-names>DAJ</given-names>
</string-name>
.
<article-title>Effects of a “new” human respiratory virus in volunteers</article-title>
.
<source xml:lang="en">British Medical Journal</source>
,
<year>1967</year>
;
<volume>3</volume>
:
<fpage>767</fpage>
<lpage>769</lpage>
.
<pub-id pub-id-type="pmid">6043624</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<label>13</label>
<mixed-citation publication-type="journal" id="cit13">
<string-name>
<surname>Taguchi</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Aiuchi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Fujiwara</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Age‐dependent response of mice to a mouse hepatitis virus, MHV‐S</article-title>
.
<source xml:lang="en">Japanese Journal of Experimental Medicine</source>
,
<year>1977</year>
;
<volume>47</volume>
(
<issue>2</issue>
):
<fpage>109</fpage>
<lpage>115</lpage>
.
<pub-id pub-id-type="pmid">194073</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<label>14</label>
<mixed-citation publication-type="journal" id="cit14">
<string-name>
<surname>Hirano</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Takenaka</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Fujiwara</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Pathogenicity of mouse hepatitis virus for mice depending upon host age and route of infection</article-title>
.
<source xml:lang="en">Japanese Journal of Experimental Medicine</source>
,
<year>1975</year>
;
<volume>45</volume>
(
<issue>4</issue>
):
<fpage>285</fpage>
<lpage>292</lpage>
.
<pub-id pub-id-type="pmid">171465</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<label>15</label>
<mixed-citation publication-type="journal" id="cit15">
<string-name>
<surname>Hirano</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Nomura</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Tawara</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Tohyama</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Neurotropisim of swine haemagglutinating encephalomyelitis virus (coronavirus) in mice depending upon host age and route of infection</article-title>
.
<source xml:lang="en">Journal of Comparative Pathology</source>
,
<year>2004</year>
;
<volume>130</volume>
:
<fpage>58</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="pmid">14693125</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<label>16</label>
<mixed-citation publication-type="journal" id="cit16">
<string-name>
<surname>Hirano</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Haga</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Sada</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Tohyama K. Susceptibility of rats of different ages to inoculation with swine haemagglutinating encephalomyelitis virus (a coronavirus) by various routes</article-title>
.
<source xml:lang="en">Journal of Comparative Pathology</source>
,
<year>2001</year>
;
<volume>125</volume>
:
<fpage>8</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="pmid">11437511</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<label>17</label>
<mixed-citation publication-type="journal" id="cit17">
<string-name>
<surname>Uenaka</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Kishimoto</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Uemura</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Ito</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Otsuki</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Cloacal inoculation with the Connecticut strain of avian infectious brouchitis virus: An attempt to produce nephropathogenic virus by in vivo passage using cloacal inoculation</article-title>
.
<source xml:lang="en">Journal of Veterinary Medical Science</source>
,
<year>1998</year>
;
<volume>60</volume>
(
<issue>4</issue>
):
<fpage>495</fpage>
<lpage>502</lpage>
.
<pub-id pub-id-type="pmid">9592724</pub-id>
</mixed-citation>
</ref>
<ref id="b18">
<label>18</label>
<mixed-citation publication-type="book" id="cit18">
<string-name>
<surname>Haas</surname>
<given-names>CN</given-names>
</string-name>
,
<string-name>
<surname>Rose</surname>
<given-names>JB</given-names>
</string-name>
,
<string-name>
<surname>Gerba</surname>
<given-names>CP</given-names>
</string-name>
.
<source xml:lang="en">Quantitative Microbial Risk Assessment</source>
. New York :
<publisher-name>John Wiley and Sons</publisher-name>
,
<year>1999</year>
. </mixed-citation>
</ref>
<ref id="b19">
<label>19</label>
<mixed-citation publication-type="book" id="cit19">
<collab collab-type="authors">R Development Core Team</collab>
.
<article-title>R: A Language and Environment for Statistical Computing</article-title>
.
<publisher-name>R Foundation for Statistical Computing</publisher-name>
, Vienna , Austria . Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.R-project.org">http://www.R-project.org</ext-link>
, Accessed on August 6,
<year>2008</year>
. </mixed-citation>
</ref>
<ref id="b20">
<label>20</label>
<mixed-citation publication-type="miscellaneous" id="cit20">
<collab collab-type="authors">Department of Health, Hong Kong</collab>
.
<article-title>Outbreak of severe acute respiratory syndrome (SARS) at Amoy Gardens, Kowloon Bay, Hong Kong, main findings of the investigation</article-title>
. April 17, 2003. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.info.gov.hk/info/sars/pdf/amoy_e.pdf">http://www.info.gov.hk/info/sars/pdf/amoy_e.pdf</ext-link>
, Accessed on June 6,
<year>2008</year>
. </mixed-citation>
</ref>
<ref id="b21">
<label>21</label>
<mixed-citation publication-type="journal" id="cit21">
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Duan</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>TS</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>TW</given-names>
</string-name>
.
<article-title>Multi‐zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens</article-title>
.
<source xml:lang="en">Indoor Air</source>
,
<year>2004</year>
;
<volume>15</volume>
:
<fpage>96</fpage>
<lpage>111</lpage>
. </mixed-citation>
</ref>
<ref id="b22">
<label>22</label>
<mixed-citation publication-type="journal" id="cit22">
<string-name>
<surname>McKinney</surname>
<given-names>LR</given-names>
</string-name>
,
<string-name>
<surname>Gong</surname>
<given-names>YY</given-names>
</string-name>
,
<string-name>
<surname>Lewis</surname>
<given-names>TG</given-names>
</string-name>
.
<article-title>Environmental transmission of SARS at Amoy Gardens</article-title>
.
<source xml:lang="en">Journal of Environmental Health</source>
,
<year>2006</year>
;
<volume>68</volume>
(
<issue>9</issue>
):
<fpage>26</fpage>
<lpage>30</lpage>
. </mixed-citation>
</ref>
<ref id="b23">
<label>23</label>
<mixed-citation publication-type="journal" id="cit23">
<string-name>
<surname>Yu</surname>
<given-names>ITS</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>TS</given-names>
</string-name>
,
<string-name>
<surname>Tam</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>AT</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>JHW</given-names>
</string-name>
,
<string-name>
<surname>Leung</surname>
<given-names>DYC</given-names>
</string-name>
,
<string-name>
<surname>Ho</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Evidence of airborne transmission of the severe acute respiratory syndrome virus</article-title>
.
<source xml:lang="en">New England Journal of Medicine</source>
,
<year>2004</year>
;
<volume>350</volume>
:
<fpage>1731</fpage>
<lpage>1739</lpage>
.
<pub-id pub-id-type="pmid">15102999</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<label>24</label>
<mixed-citation publication-type="journal" id="cit24">
<string-name>
<surname>Schmidt</surname>
<given-names>OW</given-names>
</string-name>
,
<string-name>
<surname>Cooney</surname>
<given-names>MK</given-names>
</string-name>
,
<string-name>
<surname>Kenny</surname>
<given-names>GE</given-names>
</string-name>
.
<article-title>Plaque assay and improved yield of human coronaviruses in a human rhabdomyosarcoma cell line</article-title>
.
<source xml:lang="en">Journal of Clinical Microbiology</source>
,
<year>1979</year>
;
<volume>9</volume>
(
<issue>6</issue>
):
<fpage>722</fpage>
<lpage>728</lpage>
.
<pub-id pub-id-type="pmid">500803</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<label>25</label>
<mixed-citation publication-type="journal" id="cit25">
<string-name>
<surname>Zhong</surname>
<given-names>NS</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>GWK</given-names>
</string-name>
.
<article-title>Epidemiology of severe acute respiratory syndrome (SARS): Adults and children</article-title>
.
<source xml:lang="en">Paediatric Respiratory Reviews</source>
,
<year>2004</year>
;
<volume>5</volume>
:
<fpage>270</fpage>
<lpage>274</lpage>
.
<pub-id pub-id-type="pmid">15531250</pub-id>
</mixed-citation>
</ref>
<ref id="b26">
<label>26</label>
<mixed-citation publication-type="journal" id="cit26">
<string-name>
<surname>Chu</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Poon</surname>
<given-names>LLM</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>VCC</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>KS</given-names>
</string-name>
,
<string-name>
<surname>Hung</surname>
<given-names>IFN</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>MML</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>KH</given-names>
</string-name>
,
<string-name>
<surname>Leung</surname>
<given-names>WS</given-names>
</string-name>
,
<string-name>
<surname>Tang</surname>
<given-names>BSF</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>VL</given-names>
</string-name>
,
<string-name>
<surname>Ng</surname>
<given-names>WL</given-names>
</string-name>
,
<string-name>
<surname>Sim</surname>
<given-names>TC</given-names>
</string-name>
,
<string-name>
<surname>Ng</surname>
<given-names>PW</given-names>
</string-name>
,
<string-name>
<surname>Law</surname>
<given-names>KI</given-names>
</string-name>
,
<string-name>
<surname>Tse</surname>
<given-names>DMW</given-names>
</string-name>
,
<string-name>
<surname>Peiris</surname>
<given-names>JSM</given-names>
</string-name>
,
<string-name>
<surname>Yuen</surname>
<given-names>KY</given-names>
</string-name>
.
<article-title>Initial viral load and the outcomes of SARS</article-title>
.
<source xml:lang="en">CMAJ</source>
,
<year>2004</year>
;
<volume>171</volume>
(
<issue>11</issue>
):
<fpage>1349</fpage>
<lpage>1352</lpage>
.
<pub-id pub-id-type="pmid">15557587</pub-id>
</mixed-citation>
</ref>
<ref id="b27">
<label>27</label>
<mixed-citation publication-type="journal" id="cit27">
<string-name>
<surname>Goicoechea</surname>
<given-names>MG</given-names>
</string-name>
.
<article-title>Human H5N1 influenza</article-title>
.
<source xml:lang="en">New England Journal of Medicine</source>
,
<year>2007</year>
;
<volume>356</volume>
(
<issue>13</issue>
):
<fpage>1375</fpage>
. </mixed-citation>
</ref>
<ref id="b28">
<label>28</label>
<mixed-citation publication-type="journal" id="cit28">
<string-name>
<surname>Prince</surname>
<given-names>GA</given-names>
</string-name>
,
<string-name>
<surname>Porter</surname>
<given-names>DD</given-names>
</string-name>
.
<article-title>The pathogenesis of respiratory syncytial virus infection in infant ferrets</article-title>
.
<source xml:lang="en">American Journal of Pathology</source>
,
<year>1976</year>
;
<volume>82</volume>
:
<fpage>339</fpage>
<lpage>352</lpage>
.
<pub-id pub-id-type="pmid">1251889</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<label>29</label>
<mixed-citation publication-type="journal" id="cit29">
<string-name>
<surname>Roberts</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Deming</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Paddock</surname>
<given-names>CD</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Yount</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Vogel</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Herman</surname>
<given-names>BD</given-names>
</string-name>
,
<string-name>
<surname>Sheahan</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Heise</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Genrich</surname>
<given-names>GL</given-names>
</string-name>
,
<string-name>
<surname>Zaki</surname>
<given-names>SR</given-names>
</string-name>
,
<string-name>
<surname>Baric</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>A mouse‐adapted SARS‐coronavirus causes disease and mortality in BALB/c mice</article-title>
.
<source xml:lang="en">PLoS Pathogens</source>
,
<year>2007</year>
;
<volume>3</volume>
(
<issue>1</issue>
):
<fpage>23</fpage>
<lpage>37</lpage>
. </mixed-citation>
</ref>
<ref id="b30">
<label>30</label>
<mixed-citation publication-type="journal" id="cit30">
<string-name>
<surname>Nagata</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Iwata</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Hasegawa</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Sato</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Morikawa</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Saijo</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Itamura</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Saito</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Ami</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Odagiri</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Tashiro</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Sata</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Pathology and virus dispersion in cynomolgus monkeys experimentally infected with severe acute respiratory syndrome coronavirus via different inoculation routes</article-title>
.
<source xml:lang="en">International Journal of Experimental Pathology</source>
,
<year>2007</year>
;
<volume>88</volume>
:
<fpage>403</fpage>
<lpage>414</lpage>
.
<pub-id pub-id-type="pmid">18039277</pub-id>
</mixed-citation>
</ref>
<ref id="b31">
<label>31</label>
<mixed-citation publication-type="journal" id="cit31">
<string-name>
<surname>Kuiken</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Fouchier</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Schutten</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Rimmelzwaan</surname>
<given-names>GF</given-names>
</string-name>
,
<string-name>
<surname>Van Amerongen</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Van Riel</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Laman</surname>
<given-names>JD</given-names>
</string-name>
,
<string-name>
<surname>De Jong</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Van Doornum</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Lim</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Ling</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>PK</given-names>
</string-name>
,
<string-name>
<surname>Tam</surname>
<given-names>JS</given-names>
</string-name>
,
<string-name>
<surname>Zambon</surname>
<given-names>MC</given-names>
</string-name>
,
<string-name>
<surname>Gopal</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Drosten</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Van Der Werf</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Escriou</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Manuguerra</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Stohr</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</string-name>
,
<string-name>
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</string-name>
.
<article-title>Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">Lancet</source>
,
<year>2003</year>
;
<volume>362</volume>
:
<fpage>263</fpage>
<lpage>270</lpage>
.
<pub-id pub-id-type="pmid">12892955</pub-id>
</mixed-citation>
</ref>
<ref id="b32">
<label>32</label>
<mixed-citation publication-type="journal" id="cit32">
<string-name>
<surname>McAuliffie</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Vogel</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Robert</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Fahle</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Fischer</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Shieh</surname>
<given-names>WJ</given-names>
</string-name>
,
<string-name>
<surname>Butler</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Zaki</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>St Claire</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Murphy</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys</article-title>
.
<source xml:lang="en">Virology</source>
,
<year>2004</year>
;
<volume>330</volume>
(
<issue>1</issue>
):
<fpage>8</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="pmid">15527829</pub-id>
</mixed-citation>
</ref>
<ref id="b33">
<label>33</label>
<mixed-citation publication-type="journal" id="cit33">
<string-name>
<surname>Mizgerd</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Skerrett</surname>
<given-names>SJ</given-names>
</string-name>
.
<article-title>Animal models of human pneumonia. American Journal of Physiology</article-title>
.
<source xml:lang="en">Lung Cellular and Molecular Physiology</source>
,
<year>2008</year>
;
<volume>294</volume>
:
<fpage>L387</fpage>
<lpage>L398</lpage>
.
<pub-id pub-id-type="pmid">18162603</pub-id>
</mixed-citation>
</ref>
<ref id="b34">
<label>34</label>
<mixed-citation publication-type="journal" id="cit34">
<string-name>
<surname>Bartrand</surname>
<given-names>TA</given-names>
</string-name>
,
<string-name>
<surname>Weir</surname>
<given-names>MH</given-names>
</string-name>
,
<string-name>
<surname>Haas</surname>
<given-names>CN</given-names>
</string-name>
.
<article-title>Dose‐response models for inhalation of Bacillus anthracis spores: Interspecies comparisons</article-title>
.
<source xml:lang="en">Risk Analysis</source>
,
<year>2008</year>
;
<volume>28</volume>
(
<issue>4</issue>
):
<fpage>1115</fpage>
<lpage>1124</lpage>
.
<pub-id pub-id-type="pmid">18554269</pub-id>
</mixed-citation>
</ref>
<ref id="b35">
<label>35</label>
<mixed-citation publication-type="journal" id="cit35">
<string-name>
<surname>Armstrong</surname>
<given-names>TW</given-names>
</string-name>
,
<string-name>
<surname>Haas</surname>
<given-names>CN</given-names>
</string-name>
.
<article-title>Quantitative microbial risk assessment model for Legionnaires’ disease: Animal model selection and dose‐response modeling</article-title>
.
<source xml:lang="en">Risk Analysis</source>
,
<year>2007</year>
;
<volume>27</volume>
(
<issue>6</issue>
):
<fpage>1581</fpage>
<lpage>1596</lpage>
.
<pub-id pub-id-type="pmid">18093054</pub-id>
</mixed-citation>
</ref>
<ref id="b36">
<label>36</label>
<mixed-citation publication-type="journal" id="cit36">
<string-name>
<surname>Cheng</surname>
<given-names>PKC</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>DA</given-names>
</string-name>
,
<string-name>
<surname>Tong</surname>
<given-names>LKL</given-names>
</string-name>
,
<string-name>
<surname>Ip</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Lo</surname>
<given-names>ACT</given-names>
</string-name>
,
<string-name>
<surname>Lau</surname>
<given-names>CSL</given-names>
</string-name>
,
<string-name>
<surname>Yeung</surname>
<given-names>EYH</given-names>
</string-name>
,
<string-name>
<surname>Lim</surname>
<given-names>WWL</given-names>
</string-name>
.
<article-title>Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">Lancet</source>
,
<year>2004</year>
;
<volume>363</volume>
:
<fpage>1699</fpage>
<lpage>1700</lpage>
.
<pub-id pub-id-type="pmid">15158632</pub-id>
</mixed-citation>
</ref>
<ref id="b37">
<label>37</label>
<mixed-citation publication-type="book" id="cit37">
<string-name>
<surname>Poon</surname>
<given-names>LLM</given-names>
</string-name>
.
<article-title>SARS and other coronaviruses in humans and animals</article-title>
. In
<person-group person-group-type="editor">
<name name-style="western">
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Holmes</surname>
<given-names>KV</given-names>
</name>
</person-group>
(eds). The Nidoviruses: Toward Control of SARS and Other Nidovirus Diseases. New York :
<publisher-name>Springer</publisher-name>
,
<year>2006</year>
. </mixed-citation>
</ref>
</ref-list>
<app-group>
<app id="s2" content-type="Appendix">
<sec id="ss6">
<table-wrap id="tu1" xml:lang="en" orientation="portrait" position="anchor">
<label>Table 4</label>
<caption>
<p>
<bold>APPENDIX: DATA SETS FOR MODEL DEVELOPMENT</bold>
</p>
</caption>
<table frame="hsides" rules="groups">
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<thead valign="bottom">
<tr>
<th align="left" valign="bottom" rowspan="1" colspan="1">No.</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Virus</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Host Animal</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Host Age</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Dose</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Tested</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Positive</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Negative</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td rowspan="4" valign="top" align="left" colspan="1">1</td>
<td rowspan="4" valign="top" align="left" colspan="1">rSARS‐CoV</td>
<td rowspan="4" valign="top" align="left" colspan="1">tgMice</td>
<td rowspan="4" valign="top" align="left" colspan="1">?</td>
<td align="left" valign="top" rowspan="1" colspan="1">240</td>
<td align="left" valign="top" rowspan="1" colspan="1">3</td>
<td align="left" valign="top" rowspan="1" colspan="1">1</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">800</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">2,400</td>
<td align="center" valign="top" rowspan="1" colspan="1">2</td>
<td align="center" valign="top" rowspan="1" colspan="1">2</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">12,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">6</td>
<td align="center" valign="top" rowspan="1" colspan="1">6</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="4" valign="top" align="left" colspan="1">2</td>
<td rowspan="4" valign="top" align="left" colspan="1">MHV‐1</td>
<td rowspan="4" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="4" valign="top" align="left" colspan="1">6 to 8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">50</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">500</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
<td align="center" valign="top" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">5,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="4" valign="top" align="left" colspan="1">3</td>
<td rowspan="4" valign="top" align="left" colspan="1">HCoV‐229E</td>
<td rowspan="4" valign="top" align="left" colspan="1">Humans</td>
<td rowspan="4" valign="top" align="left" colspan="1">18 to 50 years</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
<td align="left" valign="top" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">6</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">16</td>
<td align="center" valign="top" rowspan="1" colspan="1">9</td>
<td align="center" valign="top" rowspan="1" colspan="1">6</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">31</td>
<td align="center" valign="top" rowspan="1" colspan="1">6</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td rowspan="5" valign="top" align="left" colspan="1">4</td>
<td rowspan="5" valign="top" align="left" colspan="1">MHV‐S</td>
<td rowspan="5" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="5" valign="top" align="left" colspan="1">3 days</td>
<td align="left" valign="top" rowspan="1" colspan="1">20</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">200</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">2,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">20,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">200,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="4" valign="top" align="left" colspan="1">5</td>
<td rowspan="4" valign="top" align="left" colspan="1">MHV‐S</td>
<td rowspan="4" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="4" valign="top" align="left" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1">200</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">2,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">20,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">20,0000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="3" valign="top" align="left" colspan="1">6</td>
<td rowspan="3" valign="top" align="left" colspan="1">MHV‐S</td>
<td rowspan="3" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="3" valign="top" align="left" colspan="1">2 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">2,000</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">20,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">200,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td rowspan="3" valign="top" align="left" colspan="1">7</td>
<td rowspan="3" valign="top" align="left" colspan="1">MHV‐2</td>
<td rowspan="3" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="3" valign="top" align="left" colspan="1">3 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">700</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">7,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">70,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td rowspan="3" valign="top" align="left" colspan="1">8</td>
<td rowspan="3" valign="top" align="left" colspan="1">MHV‐2</td>
<td rowspan="3" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="3" valign="top" align="left" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">6,000</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">60,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">600,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td rowspan="4" valign="top" align="left" colspan="1">9</td>
<td rowspan="4" valign="top" align="left" colspan="1">HEV‐67N</td>
<td rowspan="4" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="4" valign="top" align="left" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1">10</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">3</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">100</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">1,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">10,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="5" valign="top" align="left" colspan="1">10</td>
<td rowspan="5" valign="top" align="left" colspan="1">HEV‐67N</td>
<td rowspan="5" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="5" valign="top" align="left" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">10</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">100</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">1,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">2</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">10,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">100,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="5" valign="top" align="left" colspan="1">11</td>
<td rowspan="5" valign="top" align="left" colspan="1">HEV‐67N</td>
<td rowspan="5" valign="top" align="left" colspan="1">Mice</td>
<td rowspan="5" valign="top" align="left" colspan="1">8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">10</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">100</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">1,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">2</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">10,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">100,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="4" valign="top" align="left" colspan="1">12</td>
<td rowspan="4" valign="top" align="left" colspan="1">HEV‐67N</td>
<td rowspan="4" valign="top" align="left" colspan="1">Rats</td>
<td rowspan="4" valign="top" align="left" colspan="1">1 week</td>
<td align="left" valign="top" rowspan="1" colspan="1">20</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">3</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">200</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">2,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">200,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="3" valign="top" align="left" colspan="1">13</td>
<td rowspan="3" valign="top" align="left" colspan="1">HEV‐67N</td>
<td rowspan="3" valign="top" align="left" colspan="1">Rats</td>
<td rowspan="3" valign="top" align="left" colspan="1">4 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">2,000</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">1</td>
<td align="left" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">20,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">200,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="3" valign="top" align="left" colspan="1">14</td>
<td rowspan="3" valign="top" align="left" colspan="1">HEV‐67N</td>
<td rowspan="3" valign="top" align="left" colspan="1">Rats</td>
<td rowspan="3" valign="top" align="left" colspan="1">8 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">2,000</td>
<td align="left" valign="top" rowspan="1" colspan="1">5</td>
<td align="left" valign="top" rowspan="1" colspan="1">3</td>
<td align="left" valign="top" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">20,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">3</td>
<td align="center" valign="top" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">200,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">5</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="6" valign="top" align="left" colspan="1">15</td>
<td rowspan="6" valign="top" align="left" colspan="1">IBVA‐5968</td>
<td rowspan="6" valign="top" align="left" colspan="1">Chicks</td>
<td rowspan="6" valign="top" align="left" colspan="1">9 weeks</td>
<td align="left" valign="top" rowspan="1" colspan="1">0.32</td>
<td align="left" valign="top" rowspan="1" colspan="1">11</td>
<td align="left" valign="top" rowspan="1" colspan="1">0</td>
<td align="left" valign="top" rowspan="1" colspan="1">11</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">3.2</td>
<td align="center" valign="top" rowspan="1" colspan="1">11</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">32</td>
<td align="center" valign="top" rowspan="1" colspan="1">11</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">320</td>
<td align="center" valign="top" rowspan="1" colspan="1">11</td>
<td align="center" valign="top" rowspan="1" colspan="1">0</td>
<td align="center" valign="top" rowspan="1" colspan="1">11</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">3,200</td>
<td align="center" valign="top" rowspan="1" colspan="1">11</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">32,000</td>
<td align="center" valign="top" rowspan="1" colspan="1">11</td>
<td align="center" valign="top" rowspan="1" colspan="1">1</td>
<td align="center" valign="top" rowspan="1" colspan="1">10</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
</app>
</app-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001463  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001463  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021