Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The global spread of 2019-nCoV: a molecular evolutionary analysis

Identifieur interne : 001420 ( Pmc/Corpus ); précédent : 001419; suivant : 001421

The global spread of 2019-nCoV: a molecular evolutionary analysis

Auteurs : Domenico Benvenuto ; Marta Giovanetti ; Marco Salemi ; Mattia Prosperi ; Cecilia De Flora ; Luiz Carlos Junior Alcantara ; Silvia Angeletti ; Massimo Ciccozzi

Source :

RBID : PMC:7099638

Abstract

ABSTRACT

The global spread of the 2019-nCoV is continuing and is fast moving, as indicated by the WHO raising the risk assessment to high. In this article, we provide a preliminary phylodynamic and phylogeographic analysis of this new virus. A Maximum Clade Credibility tree has been built using the 29 available whole genome sequences of 2019-nCoV and two whole genome sequences that are highly similar sequences from Bat SARS-like Coronavirus available in GeneBank. We are able to clarify the mechanism of transmission among the countries which have provided the 2019-nCoV sequence isolates from their patients. The Bayesian phylogeographic reconstruction shows that the 2019–2020 nCoV most probably originated from the Bat SARS-like Coronavirus circulating in the Rhinolophus bat family. In agreement with epidemiological observations, the most likely geographic origin of the new outbreak was the city of Wuhan, China, where 2019-nCoV time of the most recent common ancestor emerged, according to molecular clock analysis, around November 25th, 2019. These results, together with previously recorded epidemics, suggest a recurring pattern of periodical epizootic outbreaks due to Betacoronavirus. Moreover, our study describes the same population genetic dynamic underlying the SARS 2003 epidemic, and suggests the urgent need for the development of effective molecular surveillance strategies of Betacoronavirus among animals and Rhinolophus of the bat family.


Url:
DOI: 10.1080/20477724.2020.1725339
PubMed: 32048560
PubMed Central: 7099638

Links to Exploration step

PMC:7099638

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The global spread of 2019-nCoV: a molecular evolutionary analysis</title>
<author>
<name sortKey="Benvenuto, Domenico" sort="Benvenuto, Domenico" uniqKey="Benvenuto D" first="Domenico" last="Benvenuto">Domenico Benvenuto</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Giovanetti, Marta" sort="Giovanetti, Marta" uniqKey="Giovanetti M" first="Marta" last="Giovanetti">Marta Giovanetti</name>
<affiliation>
<nlm:aff id="AFF0002">
<institution>Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz</institution>
, Rio de Janeiro,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salemi, Marco" sort="Salemi, Marco" uniqKey="Salemi M" first="Marco" last="Salemi">Marco Salemi</name>
<affiliation>
<nlm:aff id="AFF0003">
<institution>Department of Epidemiology, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF0004">
<institution>Emerging Pathogens Institute, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prosperi, Mattia" sort="Prosperi, Mattia" uniqKey="Prosperi M" first="Mattia" last="Prosperi">Mattia Prosperi</name>
<affiliation>
<nlm:aff id="AFF0003">
<institution>Department of Epidemiology, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF0004">
<institution>Emerging Pathogens Institute, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Flora, Cecilia" sort="De Flora, Cecilia" uniqKey="De Flora C" first="Cecilia" last="De Flora">Cecilia De Flora</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Junior Alcantara, Luiz Carlos" sort="Junior Alcantara, Luiz Carlos" uniqKey="Junior Alcantara L" first="Luiz Carlos" last="Junior Alcantara">Luiz Carlos Junior Alcantara</name>
<affiliation>
<nlm:aff id="AFF0002">
<institution>Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz</institution>
, Rio de Janeiro,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Angeletti, Silvia" sort="Angeletti, Silvia" uniqKey="Angeletti S" first="Silvia" last="Angeletti">Silvia Angeletti</name>
<affiliation>
<nlm:aff id="AFF0005">
<institution>Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ciccozzi, Massimo" sort="Ciccozzi, Massimo" uniqKey="Ciccozzi M" first="Massimo" last="Ciccozzi">Massimo Ciccozzi</name>
<affiliation>
<nlm:aff id="AFF0002">
<institution>Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz</institution>
, Rio de Janeiro,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32048560</idno>
<idno type="pmc">7099638</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099638</idno>
<idno type="RBID">PMC:7099638</idno>
<idno type="doi">10.1080/20477724.2020.1725339</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">001420</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001420</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The global spread of 2019-nCoV: a molecular evolutionary analysis</title>
<author>
<name sortKey="Benvenuto, Domenico" sort="Benvenuto, Domenico" uniqKey="Benvenuto D" first="Domenico" last="Benvenuto">Domenico Benvenuto</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Giovanetti, Marta" sort="Giovanetti, Marta" uniqKey="Giovanetti M" first="Marta" last="Giovanetti">Marta Giovanetti</name>
<affiliation>
<nlm:aff id="AFF0002">
<institution>Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz</institution>
, Rio de Janeiro,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salemi, Marco" sort="Salemi, Marco" uniqKey="Salemi M" first="Marco" last="Salemi">Marco Salemi</name>
<affiliation>
<nlm:aff id="AFF0003">
<institution>Department of Epidemiology, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF0004">
<institution>Emerging Pathogens Institute, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prosperi, Mattia" sort="Prosperi, Mattia" uniqKey="Prosperi M" first="Mattia" last="Prosperi">Mattia Prosperi</name>
<affiliation>
<nlm:aff id="AFF0003">
<institution>Department of Epidemiology, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF0004">
<institution>Emerging Pathogens Institute, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Flora, Cecilia" sort="De Flora, Cecilia" uniqKey="De Flora C" first="Cecilia" last="De Flora">Cecilia De Flora</name>
<affiliation>
<nlm:aff id="AFF0001">
<institution>Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Junior Alcantara, Luiz Carlos" sort="Junior Alcantara, Luiz Carlos" uniqKey="Junior Alcantara L" first="Luiz Carlos" last="Junior Alcantara">Luiz Carlos Junior Alcantara</name>
<affiliation>
<nlm:aff id="AFF0002">
<institution>Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz</institution>
, Rio de Janeiro,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Angeletti, Silvia" sort="Angeletti, Silvia" uniqKey="Angeletti S" first="Silvia" last="Angeletti">Silvia Angeletti</name>
<affiliation>
<nlm:aff id="AFF0005">
<institution>Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ciccozzi, Massimo" sort="Ciccozzi, Massimo" uniqKey="Ciccozzi M" first="Massimo" last="Ciccozzi">Massimo Ciccozzi</name>
<affiliation>
<nlm:aff id="AFF0002">
<institution>Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz</institution>
, Rio de Janeiro,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pathogens and Global Health</title>
<idno type="ISSN">2047-7724</idno>
<idno type="eISSN">2047-7732</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>ABSTRACT</title>
<p>The global spread of the 2019-nCoV is continuing and is fast moving, as indicated by the WHO raising the risk assessment to high. In this article, we provide a preliminary phylodynamic and phylogeographic analysis of this new virus. A Maximum Clade Credibility tree has been built using the 29 available whole genome sequences of 2019-nCoV and two whole genome sequences that are highly similar sequences from Bat SARS-like Coronavirus available in GeneBank. We are able to clarify the mechanism of transmission among the countries which have provided the 2019-nCoV sequence isolates from their patients. The Bayesian phylogeographic reconstruction shows that the 2019–2020 nCoV most probably originated from the Bat SARS-like Coronavirus circulating in the
<italic>Rhinolophus</italic>
bat family. In agreement with epidemiological observations, the most likely geographic origin of the new outbreak was the city of Wuhan, China, where 2019-nCoV time of the most recent common ancestor emerged, according to molecular clock analysis, around November 25
<sup>th</sup>
, 2019. These results, together with previously recorded epidemics, suggest a recurring pattern of periodical epizootic outbreaks due to
<italic>Betacoronavirus</italic>
. Moreover, our study describes the same population genetic dynamic underlying the SARS 2003 epidemic, and suggests the urgent need for the development of effective molecular surveillance strategies of
<italic>Betacoronavirus</italic>
among animals and
<italic>Rhinolophus</italic>
of the bat family.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiss, Sr" uniqKey="Weiss S">SR Weiss</name>
</author>
<author>
<name sortKey="Leibowitz, Jl" uniqKey="Leibowitz J">JL. Leibowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S Günther</name>
</author>
<author>
<name sortKey="Preiser, W" uniqKey="Preiser W">W Preiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, N" uniqKey="Zhu N">N Zhu</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H Lu</name>
</author>
<author>
<name sortKey="Stratton, Cw" uniqKey="Stratton C">CW Stratton</name>
</author>
<author>
<name sortKey="Tang, Yw" uniqKey="Tang Y">YW Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ji, W" uniqKey="Ji W">W Ji</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heymann, Dl" uniqKey="Heymann D">DL Heymann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katoh, K" uniqKey="Katoh K">K Katoh</name>
</author>
<author>
<name sortKey="Rozewicki, J" uniqKey="Rozewicki J">J Rozewicki</name>
</author>
<author>
<name sortKey="Yamada, Kd" uniqKey="Yamada K">KD Yamada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, Lt" uniqKey="Nguyen L">LT Nguyen</name>
</author>
<author>
<name sortKey="Schmidt, Ha" uniqKey="Schmidt H">HA Schmidt</name>
</author>
<author>
<name sortKey="Von Haeseler, A" uniqKey="Von Haeseler A">A von Haeseler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Darriba, D" uniqKey="Darriba D">D Darriba</name>
</author>
<author>
<name sortKey="Taboada, Gl" uniqKey="Taboada G">GL Taboada</name>
</author>
<author>
<name sortKey="Doallo, R" uniqKey="Doallo R">R Doallo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Lam, Tt" uniqKey="Lam T">TT Lam</name>
</author>
<author>
<name sortKey="Max Carvalho, L" uniqKey="Max Carvalho L">L Max Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suchard, Ma" uniqKey="Suchard M">MA Suchard</name>
</author>
<author>
<name sortKey="Lemey, P" uniqKey="Lemey P">P Lemey</name>
</author>
<author>
<name sortKey="Baele, G" uniqKey="Baele G">G Baele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baele, G" uniqKey="Baele G">G Baele</name>
</author>
<author>
<name sortKey="Li, Wl" uniqKey="Li W">WL Li</name>
</author>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Ho, Sy" uniqKey="Ho S">SY Ho</name>
</author>
<author>
<name sortKey="Phillips, Mj" uniqKey="Phillips M">MJ Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Xie, D" uniqKey="Xie D">D Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salemi, M" uniqKey="Salemi M">M Salemi</name>
</author>
<author>
<name sortKey="Fitch, Wm" uniqKey="Fitch W">WM Fitch</name>
</author>
<author>
<name sortKey="Ciccozzi, M" uniqKey="Ciccozzi M">M Ciccozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, Sk" uniqKey="Lau S">SK Lau</name>
</author>
<author>
<name sortKey="Li, Ks" uniqKey="Li K">KS Li</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Pathog Glob Health</journal-id>
<journal-id journal-id-type="iso-abbrev">Pathog Glob Health</journal-id>
<journal-id journal-id-type="publisher-id">YPGH</journal-id>
<journal-id journal-id-type="publisher-id">ypgh20</journal-id>
<journal-title-group>
<journal-title>Pathogens and Global Health</journal-title>
</journal-title-group>
<issn pub-type="ppub">2047-7724</issn>
<issn pub-type="epub">2047-7732</issn>
<publisher>
<publisher-name>Taylor & Francis</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32048560</article-id>
<article-id pub-id-type="pmc">7099638</article-id>
<article-id pub-id-type="publisher-id">1725339</article-id>
<article-id pub-id-type="doi">10.1080/20477724.2020.1725339</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The global spread of 2019-nCoV: a molecular evolutionary analysis</article-title>
<alt-title alt-title-type="running-authors">D. BENVENUTO ET AL.</alt-title>
<alt-title alt-title-type="running-title">PATHOGENS AND GLOBAL HEALTH</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-3833-2927</contrib-id>
<name>
<surname>Benvenuto</surname>
<given-names>Domenico</given-names>
</name>
<xref ref-type="aff" rid="AFF0001">
<sup>a</sup>
</xref>
<xref ref-type="author-notes" rid="FT0001">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Giovanetti</surname>
<given-names>Marta</given-names>
</name>
<xref ref-type="aff" rid="AFF0002">
<sup>b</sup>
</xref>
<xref ref-type="author-notes" rid="FT0001">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Salemi</surname>
<given-names>Marco</given-names>
</name>
<xref ref-type="aff" rid="AFF0003">
<sup>c</sup>
</xref>
<xref ref-type="aff" rid="AFF0004">
<sup>d</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Prosperi</surname>
<given-names>Mattia</given-names>
</name>
<xref ref-type="aff" rid="AFF0003">
<sup>c</sup>
</xref>
<xref ref-type="aff" rid="AFF0004">
<sup>d</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>De Flora</surname>
<given-names>Cecilia</given-names>
</name>
<xref ref-type="aff" rid="AFF0001">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Junior Alcantara</surname>
<given-names>Luiz Carlos</given-names>
</name>
<xref ref-type="aff" rid="AFF0002">
<sup>b</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Angeletti</surname>
<given-names>Silvia</given-names>
</name>
<xref ref-type="corresp" rid="AN0001"></xref>
<xref ref-type="aff" rid="AFF0005">
<sup>e</sup>
</xref>
<xref ref-type="author-notes" rid="FT0001">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ciccozzi</surname>
<given-names>Massimo</given-names>
</name>
<xref ref-type="aff" rid="AFF0002">
<sup>b</sup>
</xref>
<xref ref-type="author-notes" rid="FT0001">
<sup>*</sup>
</xref>
</contrib>
<aff id="AFF0001">
<label>a</label>
<institution>Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</aff>
<aff id="AFF0002">
<label>b</label>
<institution>Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz</institution>
, Rio de Janeiro,
<country>Brazil</country>
</aff>
<aff id="AFF0003">
<label>c</label>
<institution>Department of Epidemiology, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</aff>
<aff id="AFF0004">
<label>d</label>
<institution>Emerging Pathogens Institute, University of Florida</institution>
, Gainesville, FL,
<country>USA</country>
</aff>
<aff id="AFF0005">
<label>e</label>
<institution>Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="AN0001">CONTACT Silvia Angeletti
<email xlink:href="s.angeletti@unicampus.it">s.angeletti@unicampus.it</email>
<institution>Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome</institution>
,
<country>Italy</country>
</corresp>
<fn id="FT0001">
<label>*</label>
<p>These authors contributed equally to this article</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>2</month>
<year>2020</year>
</pub-date>
<volume>0</volume>
<issue>0</issue>
<fpage seq="1">1</fpage>
<lpage>4</lpage>
<permissions>
<copyright-statement>© 2020 Informa UK Limited, trading as Taylor & Francis Group</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>Informa UK Limited, trading as Taylor & Francis Group</copyright-holder>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="YPGH_0_1725339.pdf"></self-uri>
<abstract>
<title>ABSTRACT</title>
<p>The global spread of the 2019-nCoV is continuing and is fast moving, as indicated by the WHO raising the risk assessment to high. In this article, we provide a preliminary phylodynamic and phylogeographic analysis of this new virus. A Maximum Clade Credibility tree has been built using the 29 available whole genome sequences of 2019-nCoV and two whole genome sequences that are highly similar sequences from Bat SARS-like Coronavirus available in GeneBank. We are able to clarify the mechanism of transmission among the countries which have provided the 2019-nCoV sequence isolates from their patients. The Bayesian phylogeographic reconstruction shows that the 2019–2020 nCoV most probably originated from the Bat SARS-like Coronavirus circulating in the
<italic>Rhinolophus</italic>
bat family. In agreement with epidemiological observations, the most likely geographic origin of the new outbreak was the city of Wuhan, China, where 2019-nCoV time of the most recent common ancestor emerged, according to molecular clock analysis, around November 25
<sup>th</sup>
, 2019. These results, together with previously recorded epidemics, suggest a recurring pattern of periodical epizootic outbreaks due to
<italic>Betacoronavirus</italic>
. Moreover, our study describes the same population genetic dynamic underlying the SARS 2003 epidemic, and suggests the urgent need for the development of effective molecular surveillance strategies of
<italic>Betacoronavirus</italic>
among animals and
<italic>Rhinolophus</italic>
of the bat family.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>KEYWORDS</title>
<kwd>2019-nCoV</kwd>
<kwd>molecular Epidemiology</kwd>
<kwd>phylogeny</kwd>
<kwd>SARS</kwd>
</kwd-group>
<counts>
<fig-count count="1"></fig-count>
<ref-count count="16"></ref-count>
<page-count count="4"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="S0001">
<title>Introduction</title>
<p>Emerging viruses and pathogens represent a global public health threat. The recent Coronavirus epidemic outbreak, reported for the first time in late 2019 in Wuhan, Hubei province, China, is rapidly becoming of worldwide concern. Coronaviruses are single, plus-stranded RNA viruses belonging to the family
<italic>Coronaviridae</italic>
including MERS (MERS-CoV) and SARS (SARS-CoV). Coronavirus cause different disease with respiratory, enteric, hepatic and neurological clinical symptoms [
<xref rid="CIT0001">1</xref>
,
<xref rid="CIT0002">2</xref>
]. In December 2019, several clusters of patients with pneumonia of unknown origin, epidemiologically associated with a seafood and animal market in Wuhan, were described, calling the attention of the Chinese Center for Disease Control (Report of clustering pneumonia of unknown etiology in Wuhan City (Wuhan Municipal Health Commission, 2019;
<ext-link ext-link-type="uri" xlink:href="http://wjw">http://wjw</ext-link>
.wuhan .gov.cn/front/web/showDetail/2019123108989), leading to the isolation of a new coronavirus, named 2019-nCoV, distinct from both MERS-CoV and SARS [
<xref rid="CIT0003">3</xref>
].</p>
<p>Since December 2019, the number of ascertained cases of infection has been daily increasing, with 4,593 confirmed cases and 106 deaths up to the time of writing (ECDC, Jan 26, 2020) (
<ext-link ext-link-type="uri" xlink:href="https://www.ecdc.europa.eu/en/publications-data/risk-assessment-outbreak-acute-respiratory-syndrome-associated-novel-0">https://www.ecdc.europa.eu/en/publications-data/risk-assessment-outbreak-acute-respiratory-syndrome-associated-novel-0</ext-link>
)</p>
<p>Based on epidemiological analysis, animal-to-human transmission seems to be the likely origin of the epidemic, as the first cases were detected in patients with recent history of visits to Wuhan fish and wild markets. Evidences for animal-to-human and subsequent human-to-human transmission of the virus were also reported, even if the transmission dynamics are not completely understood and significant knowledge gaps still need to be filled in [
<xref rid="CIT0004">4</xref>
<xref rid="CIT0006">6</xref>
]. In this short report, initial phylodynamic and phylogeography analyses of the 2019-nCoV were performed on the full genome sequences currently available, in order to clarify virus transmission dynamics and trace its initial epidemic spread.</p>
</sec>
<sec id="S0002">
<title>Materials and methods</title>
<p>The dataset comprised all currently available (
<italic>n</italic>
= 29) full genome sequences from the current (2019–2020) nCoV epidemic, as well as closely related (
<italic>n</italic>
= 2) bat strains (SARS-like CoV) retrieved from NCBI (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/genbank/">http://www.ncbi.nlm.nih.gov/genbank/</ext-link>
) and GISAID (
<ext-link ext-link-type="uri" xlink:href="https://www.gisaid.org/">https://www.gisaid.org/</ext-link>
) databases. Alignment was performed using MAFFT online program [
<xref rid="CIT0007">7</xref>
]. The complete dataset was assessed for presence of phylogenetic signal by applying the likelihood mapping analysis implemented in the IQ-TREE 1.6.8 software (
<ext-link ext-link-type="uri" xlink:href="http://www.iqtree.org">http://www.iqtree.org</ext-link>
) [
<xref rid="CIT0008">8</xref>
]. A maximum likelihood (ML) phylogeny was reconstructed using IQ-TREE 1.6.8 software under the HKY nucleotide substitution model with four gamma categories (HKY+G4), which was inferred in jModelTest (
<ext-link ext-link-type="uri" xlink:href="https://github.com/ddarriba/jmodeltest2">https://github.com/ddarriba/jmodeltest2</ext-link>
) as the best fitting model [
<xref rid="CIT0009">9</xref>
].</p>
<p>In order to investigate the temporal signal, we regressed root-to-tip genetic distances from this ML tree against sample collection dates using TempEst v 1.5.1 (
<ext-link ext-link-type="uri" xlink:href="http://tree.bio.ed.ac.uk">http://tree.bio.ed.ac.uk</ext-link>
) [
<xref rid="CIT0010">10</xref>
]. The ML phylogeny was used as a starting tree for Bayesian time-scaled phylogenetic analysis using BEAST 1.10.4 (
<ext-link ext-link-type="uri" xlink:href="http://beast.community/index.html">http://beast.community/index.html</ext-link>
) [
<xref rid="CIT0011">11</xref>
]. We employed a stringent model selection analysis using both path-sampling (PS) and stepping stone (SS) procedures to estimate the most appropriate molecular clock model for the Bayesian phylogenetic analysis [
<xref rid="CIT0012">12</xref>
]. We tested a) the strict molecular clock model, which assumes a single rate across all phylogeny branches, and b) the more flexible uncorrelated relaxed molecular clock model with a lognormal rate distribution (UCLN) [
<xref rid="CIT0013">13</xref>
]. Both SS and PS estimators indicated the uncorrelated relaxed molecular clock (Bayes Factor = 4.3) as the best fitted model to the dataset under analysis. Besides, we have used the he HKY+G4 codon partitioned (CP)1 + 2,3 substitution model and the Bayesian Skyline coalescent model of population size and growth [
<xref rid="CIT0014">14</xref>
]. We computed MCMC (Markov chain Monte Carlo) duplicate runs of 100 million states each, sampling every 10,000 steps. Convergence of MCMC chains was checked using Tracer v.1.7.1 [
<xref rid="CIT0014">14</xref>
]. Proper mixing of the MCMC was checked for ESS values >200 for each estimated parameter using Tracer 1.7. Systematic Biology. 2018;67(5):901–4). A Maximum Clade Credibility (MCC) trees was obtained from the tree posterior distribution using TreeAnnotator (
<ext-link ext-link-type="uri" xlink:href="http://beast.community/index.html">http://beast.community/index.html</ext-link>
) after 10% burn-in.</p>
</sec>
<sec id="S0003">
<title>Results</title>
<p>Despite the short time since the beginning of the epidemic, the isolates analyzed have already exhibited a substantial degree of heterogeneity with differences in 15% of the sites, 11% of which were parsimony informative, thus indicating the presence of sufficient phylogenetic signal for further analysis, in agreement with the low level of phylogenetic noise shown by likelihood mapping (<7%). The root-to-tip
<italic>vs</italic>
. divergence plot of the full dataset showed high correlation between sampling time and genetic distance to the root of the ML tree of the available sequences (R-squared 0.85), indicating substantial temporal signal and the possibility to calibrate a reliable molecular clock, despite the limited number of sequences and short sampling interval available.</p>
<p>Bayesian model selection chose the Bayesian Skyline demographic model with an uncorrelated relaxed clock as the one that best fit the data. Molecular clock calibration estimated the evolutionary rate of the 2019-nCoV whole genome sequences at 6.58 × 10
<sup>−3</sup>
substitutions site per year (95% HPD 5.2 × 10
<sup>−3</sup>
– 8.1 × 10
<sup>−3</sup>
).</p>
<p>
<xref rid="F0001">Figure 1</xref>
A,B shows the MCC tree with Bayesian phylogeographic reconstruction of 2019-nCoV isolates. The probable origin of 2019-nCoV is, as expected, Wuhan with a state posterior probability (spp) of 0.93 dating back the time of the most recent common ancestor (MRCA) of the human outbreak to November 25, 2019 (95%HPD: September 28, 2019; December 21, 2019), while the MRCA of Bat SARS-like Coronavirus and related 2019-nCoV lineages dates back to February 22, 2011 (95%HPD: September 20, 2008; August 15, 2014) (Figure S1), which may suggest a relatively extended period of sub-epidemic circulation before the most recent events. The first evidence of 2019-nCoV dissemination appears to be, according to our phylogeographic reconstruction, from Wuhan, China, to Nonthamburi, Thailand, with an spp. of 0.96, followed by the emergence of two distinct lineages, one with further spreading in Nonthamburi, and the second one following a more complex pattern: from Nonthamburi to Zhejiang, Huangzhou (spp = 0.47), as well as from Zhejiang to Kanagawa, Kanto (spp = 0.62) and from Nonthamburi to Guandong, Zhuhai (spp = 0.45). The first reported US cases, in Chicago, Illinois and Seattle, Washington, appeared to be linked to Guandong, Zhuhai isolates, in agreement with reports of patients traveling back from that region of China before being diagnosed. Finally, our analysis identified the Bat SARS-like Coronavirus as the most probable origin of the 2019-nCoV (spp = 0.99).
<fig id="F0001" fig-type="figure" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1080/20477724.2020.1725339-F0001</object-id>
<label>Figure 1.</label>
<caption>
<p>(a) Maximum clade credibility (MCC) tree estimated from complete or near-complete nCoV virus genomes available by enforcing a relaxed molecular clock. Triangular clades represent the nCoV 2019–2020 outbreak clade. (b) Expansion of the clade containing the novel genomes sequences from the nCoV 2019–2020 epidemic. Clade posterior probabilities are shown at well supported nodes. Internal branches were colored by ancestral state reconstruction with support shown when greater than 0.8.</p>
</caption>
<graphic xlink:href="YPGH_A_1725339_F0001_OC"></graphic>
</fig>
</p>
</sec>
<sec id="S0004">
<title>Discussion</title>
<p>Very little is known about 2019-nCoV virus, including basic biology, animal source or any specific treatment. The substantial degree of genetic heterogeneity (15%) accumulated among human isolates during the past few months of the ongoing epidemic outbreak is not necessarily surprising for an RNA virus that has been shown to be a measurably evolving population over short time spans [
<xref rid="CIT0015">15</xref>
]. However, our findings underscore the urgent need for further molecular surveillance and the development of appropriate and an in-depth monitoring system capable of investigating viral mutation and transmission capabilities as 2019-nCoV unfortunately keeps spreading at a regional and potential global level. In other words, given the virus’s fast evolutionary rate and population dynamic, tracking the emergence of novel transmission routes and/or patterns should be considered a significant priority.</p>
<p>The results of our Bayesian phylogeographic reconstruction seem to be in agreement with a recent report of Benvenuto et al. (
<ext-link ext-link-type="uri" xlink:href="https://www.biorxiv.org/">https://www.biorxiv.org/</ext-link>
) suggesting that a Bat SARS-like coronavirus sequence is homologous and genetically more similar to the 2019-nCoV than other Bat SARS-like coronavirus sequences, but very distant from sequences isolated in SARS 202/2003 epidemic and MERS coronavirus. The finding may imply a most recent common ancestor between 2019-nCoV and the Bat SARS-like Coronavirus circulating in the
<italic>Rhinolophus</italic>
bat family. We also identify, in agreement with epidemiological reports, the city of Wuhan as the most likely origin of the human epidemic, dating back to the end of November 2019. In 2010, a previous article has suggested that the emergence of diverse virus strains within a few decades, in the different
<italic>Rhinolophus</italic>
species, may be the result of rapid evolution generating variants with the ability of easily crossing species barriers. The same study has shown that the epizootic transmission of the SARS from bat to human during the 2003 epidemic may have actually occurred up to 8 years earlier than the actual human outbreak [
<xref rid="CIT0016">16</xref>
]. Moreover, the migration map of the Rhinolophus bats in China involves almost the same geographic areas of the 2019-nCoV epidemic (
<ext-link ext-link-type="uri" xlink:href="http://www.bio.bris.ac.uk/research/bats/China%20bats/rhinolophussinicus.htm">http://www.bio.bris.ac.uk/research/bats/China%20bats/rhinolophussinicus.htm</ext-link>
). Taken together, these results indicate a recurring pattern among the sub-genre of the
<italic>Betacoronavirus l</italic>
eading to periodical epizootic epidemics.</p>
<p>In the present 2019-nCoV epidemic, WHO estimates R0, the basic reproduction number, as 1.4 to 2.5 less than SARS (2 to 5); but, this number can grow if the epidemic is not controlled by applying quarantine and isolation strategies. Purely epidemiological data such as incidence reports and contact tracing can provide background information on individual cases and population level transmission. However, molecular epidemiological data analyses, when sampling strategies are appropriate and representative of the full genetic heterogeneity of the pathogen population, can circumvent human error and present quantitative information about an infectious agent.</p>
<p>Combining epidemiology with molecular evolutionary data in a holistic approach is valuable for understanding the virus epidemic history and transmission in order to implement effective public health measures and prevent future epidemics like SARS-CoV and 2019-nCoV. Using phylodynamic analysis to investigate 2019-nCoV evolutionary history will add indispensable details to curb the current outbreak by identifying most closely related cases and providing crucial information of transmission and evolutionary patterns.</p>
</sec>
</body>
<back>
<sec id="S0005">
<title>Disclosure statement</title>
<p>No potential conflict of interest was reported by the authors.</p>
</sec>
<sec id="S0006" sec-type="supplementary-material">
<title>Supplementary material</title>
<p>Supplemental data for this article can be accessed
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1080/20477724.2020.1725339">here</ext-link>
.</p>
<supplementary-material content-type="local-data" id="SM2986">
<caption>
<title>Supplemental Material</title>
</caption>
<media mimetype="application" mime-subtype="tiff" xlink:href="YPGH_A_1725339_SM2986.tiff" orientation="portrait" id="d37e429" position="anchor"></media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="CIT0001">
<label>[1]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Weiss</surname>
<given-names>SR</given-names>
</name>
,
<name name-style="western">
<surname>Leibowitz</surname>
<given-names>JL.</given-names>
</name>
</person-group>
<article-title>Coronavirus pathogenesis</article-title>
.
<source>Adv Virus Res</source>
.
<year>2011</year>
;
<volume>81</volume>
:
<fpage>85</fpage>
<lpage>164</lpage>
.
<pub-id pub-id-type="pmid">22094080</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0002">
<label>[2]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Günther</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Preiser</surname>
<given-names>W</given-names>
</name>
, et al</person-group>
<article-title>Identification of a novel coronavirus associated with severe acute respiratory syndrome</article-title>
.
<source>N Engl J Med</source>
.
<year>2003</year>
;
<volume>348</volume>
(
<issue>20</issue>
):
<fpage>1967</fpage>
<lpage>1976</lpage>
.
<pub-id pub-id-type="pmid">12690091</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0003">
<label>[3]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhu</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>W</given-names>
</name>
, et al</person-group>
<article-title>A novel coronavirus from patients with pneumonia in China, 2019</article-title>
.
<source>N Engl J Med</source>
.
<year>2020</year>
<month>1</month>
<day>24</day>
DOI:
<pub-id pub-id-type="doi">10.1056/NEJMoa2001017</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0004">
<label>[4]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lu</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Stratton</surname>
<given-names>CW</given-names>
</name>
,
<name name-style="western">
<surname>Tang</surname>
<given-names>YW</given-names>
</name>
</person-group>
<article-title>Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle</article-title>
.
<source>J Med Virol</source>
.
<year>2020</year>
DOI:
<pub-id pub-id-type="doi">10.1002/jmv.25678</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0005">
<label>[5]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ji</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Zhao</surname>
<given-names>X</given-names>
</name>
, et al</person-group>
<article-title>Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross‐species transmission from snake to human</article-title>
.
<source>J Med Virol</source>
.
<year>2020</year>
<month>1</month>
<day>22</day>
DOI:
<pub-id pub-id-type="doi">10.1002/jmv.25682</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0006">
<label>[6]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Heymann</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Emerging understandings of 2019-nCoV</article-title>
.
<source>Lancet</source>
.
<year>2020</year>
<month>1</month>
<day>24</day>
DOI:
<pub-id pub-id-type="doi">10.1016/S0140-6736(20)30186-0</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0007">
<label>[7]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Katoh</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Rozewicki</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Yamada</surname>
<given-names>KD</given-names>
</name>
</person-group>
<article-title>MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization</article-title>
.
<source>Brief Bioinform</source>
.
<year>2017</year>
; 20(4): 1160–1166.</mixed-citation>
</ref>
<ref id="CIT0008">
<label>[8]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Nguyen</surname>
<given-names>LT</given-names>
</name>
,
<name name-style="western">
<surname>Schmidt</surname>
<given-names>HA</given-names>
</name>
,
<name name-style="western">
<surname>von Haeseler</surname>
<given-names>A</given-names>
</name>
, et al</person-group>
<article-title>IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies</article-title>
.
<source>Mol Biol Evol</source>
.
<year>2015</year>
;
<volume>32</volume>
(
<issue>1</issue>
):
<fpage>268</fpage>
<lpage>274</lpage>
.
<pub-id pub-id-type="pmid">25371430</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0009">
<label>[9]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Darriba</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Taboada</surname>
<given-names>GL</given-names>
</name>
,
<name name-style="western">
<surname>Doallo</surname>
<given-names>R</given-names>
</name>
, et al</person-group>
<article-title>jModelTest 2: more models, new heuristics and parallel computing</article-title>
.
<source>Nat Methods</source>
.
<year>2012</year>
;
<volume>9</volume>
(
<issue>8</issue>
):
<fpage>772</fpage>
.</mixed-citation>
</ref>
<ref id="CIT0010">
<label>[10]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Lam</surname>
<given-names>TT</given-names>
</name>
,
<name name-style="western">
<surname>Max Carvalho</surname>
<given-names>L</given-names>
</name>
, et al</person-group>
<article-title>Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen)</article-title>
.
<source>Virus Evol</source>
.
<year>2016</year>
;
<volume>2</volume>
(
<issue>1</issue>
):
<fpage>vew007</fpage>
.
<pub-id pub-id-type="pmid">27774300</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0011">
<label>[11]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Suchard</surname>
<given-names>MA</given-names>
</name>
,
<name name-style="western">
<surname>Lemey</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Baele</surname>
<given-names>G</given-names>
</name>
, et al</person-group>
<article-title>Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10</article-title>
.
<source>Virus Evol</source>
.
<year>2018</year>
;
<volume>4</volume>
(
<issue>1</issue>
):
<fpage>vey016</fpage>
.
<pub-id pub-id-type="pmid">29942656</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0012">
<label>[12]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Baele</surname>
<given-names>G</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>WL</given-names>
</name>
,
<name name-style="western">
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
, et al</person-group>
<article-title>Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics</article-title>
.
<source>Mol Biol Evol</source>
.
<year>2013</year>
;
<volume>30</volume>
(
<issue>2</issue>
):
<fpage>239</fpage>
<lpage>243</lpage>
.
<pub-id pub-id-type="pmid">23090976</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0013">
<label>[13]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
,
<name name-style="western">
<surname>Ho</surname>
<given-names>SY</given-names>
</name>
,
<name name-style="western">
<surname>Phillips</surname>
<given-names>MJ</given-names>
</name>
, et al</person-group>
<article-title>Relaxed phylogenetics and dating with confidence</article-title>
.
<source>PLoS Biol</source>
.
<year>2006</year>
;
<volume>4</volume>
(
<issue>5</issue>
):
<fpage>e88</fpage>
.
<pub-id pub-id-type="pmid">16683862</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0014">
<label>[14]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
,
<name name-style="western">
<surname>Xie</surname>
<given-names>D</given-names>
</name>
, et al</person-group>
<article-title>Posterior summarization in Bayesian phylogenetics using tracer 1.7</article-title>
.
<source>Syst Biol</source>
.
<year>2018</year>
;
<volume>67</volume>
(
<issue>5</issue>
):
<fpage>901</fpage>
<lpage>904</lpage>
.
<pub-id pub-id-type="pmid">29718447</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0015">
<label>[15]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Salemi</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Fitch</surname>
<given-names>WM</given-names>
</name>
,
<name name-style="western">
<surname>Ciccozzi</surname>
<given-names>M</given-names>
</name>
, et al</person-group>
<article-title>SARS-CoV sequence characteristics and evolutionary rate estimate from maximum likelihood analysis</article-title>
.
<source>J Virol</source>
.
<year>2004</year>
;
<volume>78</volume>
:
<fpage>1602</fpage>
<lpage>1603</lpage>
.
<pub-id pub-id-type="pmid">14722315</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0016">
<label>[16]</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lau</surname>
<given-names>SK</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>KS</given-names>
</name>
,
<name name-style="western">
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
, et al</person-group>
<article-title>Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events</article-title>
.
<source>J Virol</source>
.
<year>2010</year>
;
<volume>84</volume>
(
<issue>6</issue>
):
<fpage>2808</fpage>
<lpage>2819</lpage>
.
<pub-id pub-id-type="pmid">20071579</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001420 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001420 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7099638
   |texte=   The global spread of 2019-nCoV: a molecular evolutionary analysis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32048560" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021