Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics

Identifieur interne : 001407 ( Pmc/Corpus ); précédent : 001406; suivant : 001408

Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics

Auteurs : Everett Clinton Smith ; Hervé Blanc ; Marco Vignuzzi ; Mark R. Denison

Source :

RBID : PMC:3744431

Abstract

No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002–2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3′-to-5′ exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN−) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN− CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN− population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition, and suggest that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics in combination with RBV or RNA mutagens.


Url:
DOI: 10.1371/journal.ppat.1003565
PubMed: 23966862
PubMed Central: 3744431

Links to Exploration step

PMC:3744431

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics</title>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Blanc, Herve" sort="Blanc, Herve" uniqKey="Blanc H" first="Hervé" last="Blanc">Hervé Blanc</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vignuzzi, Marco" sort="Vignuzzi, Marco" uniqKey="Vignuzzi M" first="Marco" last="Vignuzzi">Marco Vignuzzi</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R." last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23966862</idno>
<idno type="pmc">3744431</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744431</idno>
<idno type="RBID">PMC:3744431</idno>
<idno type="doi">10.1371/journal.ppat.1003565</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001407</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001407</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics</title>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Blanc, Herve" sort="Blanc, Herve" uniqKey="Blanc H" first="Hervé" last="Blanc">Hervé Blanc</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vignuzzi, Marco" sort="Vignuzzi, Marco" uniqKey="Vignuzzi M" first="Marco" last="Vignuzzi">Marco Vignuzzi</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R." last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Pathogens</title>
<idno type="ISSN">1553-7366</idno>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002–2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3′-to-5′ exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN−) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN− CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN− population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition, and suggest that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics in combination with RBV or RNA mutagens.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Am" uniqKey="Zaki A">AM Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, Tm" uniqKey="Bestebroer T">TM Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, Ad" uniqKey="Osterhaus A">AD Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, Ra" uniqKey="Fouchier R">RA Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
<author>
<name sortKey="Netland, J" uniqKey="Netland J">J Netland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S Gunther</name>
</author>
<author>
<name sortKey="Preiser, W" uniqKey="Preiser W">W Preiser</name>
</author>
<author>
<name sortKey="Van Der Werf, S" uniqKey="Van Der Werf S">S van der Werf</name>
</author>
<author>
<name sortKey="Brodt, Hr" uniqKey="Brodt H">HR Brodt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ksiazek, Tg" uniqKey="Ksiazek T">TG Ksiazek</name>
</author>
<author>
<name sortKey="Erdman, D" uniqKey="Erdman D">D Erdman</name>
</author>
<author>
<name sortKey="Goldsmith, Cs" uniqKey="Goldsmith C">CS Goldsmith</name>
</author>
<author>
<name sortKey="Zaki, Sr" uniqKey="Zaki S">SR Zaki</name>
</author>
<author>
<name sortKey="Peret, T" uniqKey="Peret T">T Peret</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, Jsm" uniqKey="Peiris J">JSM Peiris</name>
</author>
<author>
<name sortKey="Lai, St" uniqKey="Lai S">ST Lai</name>
</author>
<author>
<name sortKey="Poon, Llm" uniqKey="Poon L">LLM Poon</name>
</author>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
<author>
<name sortKey="Yam, Lyc" uniqKey="Yam L">LYC Yam</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijaykrishna, D" uniqKey="Vijaykrishna D">D Vijaykrishna</name>
</author>
<author>
<name sortKey="Smith, Gj" uniqKey="Smith G">GJ Smith</name>
</author>
<author>
<name sortKey="Zhang, Jx" uniqKey="Zhang J">JX Zhang</name>
</author>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfefferle, S" uniqKey="Pfefferle S">S Pfefferle</name>
</author>
<author>
<name sortKey="Oppong, S" uniqKey="Oppong S">S Oppong</name>
</author>
<author>
<name sortKey="Drexler, Jf" uniqKey="Drexler J">JF Drexler</name>
</author>
<author>
<name sortKey="Gloza Rausch, F" uniqKey="Gloza Rausch F">F Gloza-Rausch</name>
</author>
<author>
<name sortKey="Ipsen, A" uniqKey="Ipsen A">A Ipsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gloza Rausch, F" uniqKey="Gloza Rausch F">F Gloza-Rausch</name>
</author>
<author>
<name sortKey="Ipsen, A" uniqKey="Ipsen A">A Ipsen</name>
</author>
<author>
<name sortKey="Seebens, A" uniqKey="Seebens A">A Seebens</name>
</author>
<author>
<name sortKey="Gottsche, M" uniqKey="Gottsche M">M Gottsche</name>
</author>
<author>
<name sortKey="Panning, M" uniqKey="Panning M">M Panning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huynh, J" uniqKey="Huynh J">J Huynh</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Yount, B" uniqKey="Yount B">B Yount</name>
</author>
<author>
<name sortKey="Smith, A" uniqKey="Smith A">A Smith</name>
</author>
<author>
<name sortKey="Sturges, L" uniqKey="Sturges L">L Sturges</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
<author>
<name sortKey="De Graaf, M" uniqKey="De Graaf M">M de Graaf</name>
</author>
<author>
<name sortKey="Lauber, C" uniqKey="Lauber C">C Lauber</name>
</author>
<author>
<name sortKey="Bestebroer, Tm" uniqKey="Bestebroer T">TM Bestebroer</name>
</author>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bermingham, A" uniqKey="Bermingham A">A Bermingham</name>
</author>
<author>
<name sortKey="Chand, Ma" uniqKey="Chand M">MA Chand</name>
</author>
<author>
<name sortKey="Brown, Cs" uniqKey="Brown C">CS Brown</name>
</author>
<author>
<name sortKey="Aarons, E" uniqKey="Aarons E">E Aarons</name>
</author>
<author>
<name sortKey="Tong, C" uniqKey="Tong C">C Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H Mou</name>
</author>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
<author>
<name sortKey="Dekkers, Dh" uniqKey="Dekkers D">DH Dekkers</name>
</author>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Minskaia, E" uniqKey="Minskaia E">E Minskaia</name>
</author>
<author>
<name sortKey="Hertzig, T" uniqKey="Hertzig T">T Hertzig</name>
</author>
<author>
<name sortKey="Gorbalenya, Ae" uniqKey="Gorbalenya A">AE Gorbalenya</name>
</author>
<author>
<name sortKey="Campanacci, V" uniqKey="Campanacci V">V Campanacci</name>
</author>
<author>
<name sortKey="Cambillau, C" uniqKey="Cambillau C">C Cambillau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorbalenya, Ae" uniqKey="Gorbalenya A">AE Gorbalenya</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Ec" uniqKey="Smith E">EC Smith</name>
</author>
<author>
<name sortKey="Denison, Mr" uniqKey="Denison M">MR Denison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuo, Y" uniqKey="Zuo Y">Y Zuo</name>
</author>
<author>
<name sortKey="Deutscher, Mp" uniqKey="Deutscher M">MP Deutscher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckerle, Ld" uniqKey="Eckerle L">LD Eckerle</name>
</author>
<author>
<name sortKey="Becker, Mm" uniqKey="Becker M">MM Becker</name>
</author>
<author>
<name sortKey="Halpin, Ra" uniqKey="Halpin R">RA Halpin</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
<author>
<name sortKey="Venter, E" uniqKey="Venter E">E Venter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckerle, Ld" uniqKey="Eckerle L">LD Eckerle</name>
</author>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X Lu</name>
</author>
<author>
<name sortKey="Sperry, Sm" uniqKey="Sperry S">SM Sperry</name>
</author>
<author>
<name sortKey="Choi, L" uniqKey="Choi L">L Choi</name>
</author>
<author>
<name sortKey="Denison, Mr" uniqKey="Denison M">MR Denison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Rl" uniqKey="Graham R">RL Graham</name>
</author>
<author>
<name sortKey="Becker, Mm" uniqKey="Becker M">MM Becker</name>
</author>
<author>
<name sortKey="Eckerle, Ld" uniqKey="Eckerle L">LD Eckerle</name>
</author>
<author>
<name sortKey="Bolles, M" uniqKey="Bolles M">M Bolles</name>
</author>
<author>
<name sortKey="Denison, Mr" uniqKey="Denison M">MR Denison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouvet, M" uniqKey="Bouvet M">M Bouvet</name>
</author>
<author>
<name sortKey="Imbert, I" uniqKey="Imbert I">I Imbert</name>
</author>
<author>
<name sortKey="Subissi, L" uniqKey="Subissi L">L Subissi</name>
</author>
<author>
<name sortKey="Gluais, L" uniqKey="Gluais L">L Gluais</name>
</author>
<author>
<name sortKey="Canard, B" uniqKey="Canard B">B Canard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crotty, S" uniqKey="Crotty S">S Crotty</name>
</author>
<author>
<name sortKey="Cameron, Ce" uniqKey="Cameron C">CE Cameron</name>
</author>
<author>
<name sortKey="Andino, R" uniqKey="Andino R">R Andino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crotty, S" uniqKey="Crotty S">S Crotty</name>
</author>
<author>
<name sortKey="Maag, D" uniqKey="Maag D">D Maag</name>
</author>
<author>
<name sortKey="Arnold, Jj" uniqKey="Arnold J">JJ Arnold</name>
</author>
<author>
<name sortKey="Zhong, W" uniqKey="Zhong W">W Zhong</name>
</author>
<author>
<name sortKey="Lau, Jy" uniqKey="Lau J">JY Lau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiou, He" uniqKey="Chiou H">HE Chiou</name>
</author>
<author>
<name sortKey="Liu, Cl" uniqKey="Liu C">CL Liu</name>
</author>
<author>
<name sortKey="Buttrey, Mj" uniqKey="Buttrey M">MJ Buttrey</name>
</author>
<author>
<name sortKey="Kuo, Hp" uniqKey="Kuo H">HP Kuo</name>
</author>
<author>
<name sortKey="Liu, Hw" uniqKey="Liu H">HW Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Mp" uniqKey="Muller M">MP Muller</name>
</author>
<author>
<name sortKey="Dresser, L" uniqKey="Dresser L">L Dresser</name>
</author>
<author>
<name sortKey="Raboud, J" uniqKey="Raboud J">J Raboud</name>
</author>
<author>
<name sortKey="Mcgeer, A" uniqKey="Mcgeer A">A McGeer</name>
</author>
<author>
<name sortKey="Rea, E" uniqKey="Rea E">E Rea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barnard, Dl" uniqKey="Barnard D">DL Barnard</name>
</author>
<author>
<name sortKey="Day, Cw" uniqKey="Day C">CW Day</name>
</author>
<author>
<name sortKey="Bailey, K" uniqKey="Bailey K">K Bailey</name>
</author>
<author>
<name sortKey="Heiner, M" uniqKey="Heiner M">M Heiner</name>
</author>
<author>
<name sortKey="Montgomery, R" uniqKey="Montgomery R">R Montgomery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stockman, Lj" uniqKey="Stockman L">LJ Stockman</name>
</author>
<author>
<name sortKey="Bellamy, R" uniqKey="Bellamy R">R Bellamy</name>
</author>
<author>
<name sortKey="Garner, P" uniqKey="Garner P">P Garner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grande Perez, A" uniqKey="Grande Perez A">A Grande-Perez</name>
</author>
<author>
<name sortKey="Sierra, S" uniqKey="Sierra S">S Sierra</name>
</author>
<author>
<name sortKey="Castro, Mg" uniqKey="Castro M">MG Castro</name>
</author>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
<author>
<name sortKey="Lowenstein, Pr" uniqKey="Lowenstein P">PR Lowenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yount, B" uniqKey="Yount B">B Yount</name>
</author>
<author>
<name sortKey="Denison, Mr" uniqKey="Denison M">MR Denison</name>
</author>
<author>
<name sortKey="Weiss, Sr" uniqKey="Weiss S">SR Weiss</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yount, B" uniqKey="Yount B">B Yount</name>
</author>
<author>
<name sortKey="Curtis, Km" uniqKey="Curtis K">KM Curtis</name>
</author>
<author>
<name sortKey="Fritz, Ea" uniqKey="Fritz E">EA Fritz</name>
</author>
<author>
<name sortKey="Hensley, Le" uniqKey="Hensley L">LE Hensley</name>
</author>
<author>
<name sortKey="Jahrling, Pb" uniqKey="Jahrling P">PB Jahrling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Livak, Kj" uniqKey="Livak K">KJ Livak</name>
</author>
<author>
<name sortKey="Schmittgen, Td" uniqKey="Schmittgen T">TD Schmittgen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donaldson, Ef" uniqKey="Donaldson E">EF Donaldson</name>
</author>
<author>
<name sortKey="Sims, Ac" uniqKey="Sims A">AC Sims</name>
</author>
<author>
<name sortKey="Graham, Rl" uniqKey="Graham R">RL Graham</name>
</author>
<author>
<name sortKey="Denison, Mr" uniqKey="Denison M">MR Denison</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donaldson, Ef" uniqKey="Donaldson E">EF Donaldson</name>
</author>
<author>
<name sortKey="Sims, Ac" uniqKey="Sims A">AC Sims</name>
</author>
<author>
<name sortKey="Deming, Dj" uniqKey="Deming D">DJ Deming</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gnadig, Nf" uniqKey="Gnadig N">NF Gnadig</name>
</author>
<author>
<name sortKey="Beaucourt, S" uniqKey="Beaucourt S">S Beaucourt</name>
</author>
<author>
<name sortKey="Campagnola, G" uniqKey="Campagnola G">G Campagnola</name>
</author>
<author>
<name sortKey="Borderia, Av" uniqKey="Borderia A">AV Borderia</name>
</author>
<author>
<name sortKey="Sanz Ramos, M" uniqKey="Sanz Ramos M">M Sanz-Ramos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Durbin, R" uniqKey="Durbin R">R Durbin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Handsaker, B" uniqKey="Handsaker B">B Handsaker</name>
</author>
<author>
<name sortKey="Wysoker, A" uniqKey="Wysoker A">A Wysoker</name>
</author>
<author>
<name sortKey="Fennell, T" uniqKey="Fennell T">T Fennell</name>
</author>
<author>
<name sortKey="Ruan, J" uniqKey="Ruan J">J Ruan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crotty, S" uniqKey="Crotty S">S Crotty</name>
</author>
<author>
<name sortKey="Cameron, C" uniqKey="Cameron C">C Cameron</name>
</author>
<author>
<name sortKey="Andino, R" uniqKey="Andino R">R Andino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agudo, R" uniqKey="Agudo R">R Agudo</name>
</author>
<author>
<name sortKey="Ferrer Orta, C" uniqKey="Ferrer Orta C">C Ferrer-Orta</name>
</author>
<author>
<name sortKey="Arias, A" uniqKey="Arias A">A Arias</name>
</author>
<author>
<name sortKey="De La Higuera, I" uniqKey="De La Higuera I">I de la Higuera</name>
</author>
<author>
<name sortKey="Perales, C" uniqKey="Perales C">C Perales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arias, A" uniqKey="Arias A">A Arias</name>
</author>
<author>
<name sortKey="Arnold, Jj" uniqKey="Arnold J">JJ Arnold</name>
</author>
<author>
<name sortKey="Sierra, M" uniqKey="Sierra M">M Sierra</name>
</author>
<author>
<name sortKey="Smidansky, Ed" uniqKey="Smidansky E">ED Smidansky</name>
</author>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maag, D" uniqKey="Maag D">D Maag</name>
</author>
<author>
<name sortKey="Castro, C" uniqKey="Castro C">C Castro</name>
</author>
<author>
<name sortKey="Hong, Z" uniqKey="Hong Z">Z Hong</name>
</author>
<author>
<name sortKey="Cameron, Ce" uniqKey="Cameron C">CE Cameron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sierra, M" uniqKey="Sierra M">M Sierra</name>
</author>
<author>
<name sortKey="Airaksinen, A" uniqKey="Airaksinen A">A Airaksinen</name>
</author>
<author>
<name sortKey="Gonzalez Lopez, C" uniqKey="Gonzalez Lopez C">C Gonzalez-Lopez</name>
</author>
<author>
<name sortKey="Agudo, R" uniqKey="Agudo R">R Agudo</name>
</author>
<author>
<name sortKey="Arias, A" uniqKey="Arias A">A Arias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamiya, K" uniqKey="Kamiya K">K Kamiya</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P Huang</name>
</author>
<author>
<name sortKey="Plunkett, W" uniqKey="Plunkett W">W Plunkett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, Se" uniqKey="Lim S">SE Lim</name>
</author>
<author>
<name sortKey="Copeland, Wc" uniqKey="Copeland W">WC Copeland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Aa" uniqKey="Johnson A">AA Johnson</name>
</author>
<author>
<name sortKey="Ray, As" uniqKey="Ray A">AS Ray</name>
</author>
<author>
<name sortKey="Hanes, J" uniqKey="Hanes J">J Hanes</name>
</author>
<author>
<name sortKey="Suo, Z" uniqKey="Suo Z">Z Suo</name>
</author>
<author>
<name sortKey="Colacino, Jm" uniqKey="Colacino J">JM Colacino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H Lee</name>
</author>
<author>
<name sortKey="Hanes, J" uniqKey="Hanes J">J Hanes</name>
</author>
<author>
<name sortKey="Johnson, Ka" uniqKey="Johnson K">KA Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, Jj" uniqKey="Arnold J">JJ Arnold</name>
</author>
<author>
<name sortKey="Sharma, Sd" uniqKey="Sharma S">SD Sharma</name>
</author>
<author>
<name sortKey="Feng, Jy" uniqKey="Feng J">JY Feng</name>
</author>
<author>
<name sortKey="Ray, As" uniqKey="Ray A">AS Ray</name>
</author>
<author>
<name sortKey="Smidansky, Ed" uniqKey="Smidansky E">ED Smidansky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coffey, Ll" uniqKey="Coffey L">LL Coffey</name>
</author>
<author>
<name sortKey="Beeharry, Y" uniqKey="Beeharry Y">Y Beeharry</name>
</author>
<author>
<name sortKey="Borderia, Av" uniqKey="Borderia A">AV Borderia</name>
</author>
<author>
<name sortKey="Blanc, H" uniqKey="Blanc H">H Blanc</name>
</author>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M Vignuzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M Vignuzzi</name>
</author>
<author>
<name sortKey="Wendt, E" uniqKey="Wendt E">E Wendt</name>
</author>
<author>
<name sortKey="Andino, R" uniqKey="Andino R">R Andino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfeiffer, Jk" uniqKey="Pfeiffer J">JK Pfeiffer</name>
</author>
<author>
<name sortKey="Kirkegaard, K" uniqKey="Kirkegaard K">K Kirkegaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Streeter, Dg" uniqKey="Streeter D">DG Streeter</name>
</author>
<author>
<name sortKey="Witkowski, Jt" uniqKey="Witkowski J">JT Witkowski</name>
</author>
<author>
<name sortKey="Khare, Gp" uniqKey="Khare G">GP Khare</name>
</author>
<author>
<name sortKey="Sidwell, Rw" uniqKey="Sidwell R">RW Sidwell</name>
</author>
<author>
<name sortKey="Bauer, Rj" uniqKey="Bauer R">RJ Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carter, Sb" uniqKey="Carter S">SB Carter</name>
</author>
<author>
<name sortKey="Franklin, Tj" uniqKey="Franklin T">TJ Franklin</name>
</author>
<author>
<name sortKey="Jones, Df" uniqKey="Jones D">DF Jones</name>
</author>
<author>
<name sortKey="Leonard, Bj" uniqKey="Leonard B">BJ Leonard</name>
</author>
<author>
<name sortKey="Mills, Sd" uniqKey="Mills S">SD Mills</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carr, Sf" uniqKey="Carr S">SF Carr</name>
</author>
<author>
<name sortKey="Papp, E" uniqKey="Papp E">E Papp</name>
</author>
<author>
<name sortKey="Wu, Jc" uniqKey="Wu J">JC Wu</name>
</author>
<author>
<name sortKey="Natsumeda, Y" uniqKey="Natsumeda Y">Y Natsumeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franklin, Tj" uniqKey="Franklin T">TJ Franklin</name>
</author>
<author>
<name sortKey="Cook, Jm" uniqKey="Cook J">JM Cook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takhampunya, R" uniqKey="Takhampunya R">R Takhampunya</name>
</author>
<author>
<name sortKey="Ubol, S" uniqKey="Ubol S">S Ubol</name>
</author>
<author>
<name sortKey="Houng, Hs" uniqKey="Houng H">HS Houng</name>
</author>
<author>
<name sortKey="Cameron, Ce" uniqKey="Cameron C">CE Cameron</name>
</author>
<author>
<name sortKey="Padmanabhan, R" uniqKey="Padmanabhan R">R Padmanabhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
<author>
<name sortKey="Sheldon, J" uniqKey="Sheldon J">J Sheldon</name>
</author>
<author>
<name sortKey="Perales, C" uniqKey="Perales C">C Perales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ibarra, Kd" uniqKey="Ibarra K">KD Ibarra</name>
</author>
<author>
<name sortKey="Pfeiffer, Jk" uniqKey="Pfeiffer J">JK Pfeiffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, Nr" uniqKey="Shah N">NR Shah</name>
</author>
<author>
<name sortKey="Sunderland, A" uniqKey="Sunderland A">A Sunderland</name>
</author>
<author>
<name sortKey="Grdzelishvili, Vz" uniqKey="Grdzelishvili V">VZ Grdzelishvili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
<author>
<name sortKey="Morgenstern, B" uniqKey="Morgenstern B">B Morgenstern</name>
</author>
<author>
<name sortKey="Bauer, G" uniqKey="Bauer G">G Bauer</name>
</author>
<author>
<name sortKey="Chandra, P" uniqKey="Chandra P">P Chandra</name>
</author>
<author>
<name sortKey="Rabenau, H" uniqKey="Rabenau H">H Rabenau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreno, H" uniqKey="Moreno H">H Moreno</name>
</author>
<author>
<name sortKey="Tejero, H" uniqKey="Tejero H">H Tejero</name>
</author>
<author>
<name sortKey="De La Torre, Jc" uniqKey="De La Torre J">JC de la Torre</name>
</author>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
<author>
<name sortKey="Martin, V" uniqKey="Martin V">V Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agudo, R" uniqKey="Agudo R">R Agudo</name>
</author>
<author>
<name sortKey="Arias, A" uniqKey="Arias A">A Arias</name>
</author>
<author>
<name sortKey="Pariente, N" uniqKey="Pariente N">N Pariente</name>
</author>
<author>
<name sortKey="Perales, C" uniqKey="Perales C">C Perales</name>
</author>
<author>
<name sortKey="Escarmis, C" uniqKey="Escarmis C">C Escarmis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De La Torre, Jc" uniqKey="De La Torre J">JC de la Torre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agudo, R" uniqKey="Agudo R">R Agudo</name>
</author>
<author>
<name sortKey="Arias, A" uniqKey="Arias A">A Arias</name>
</author>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, Jj" uniqKey="Arnold J">JJ Arnold</name>
</author>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M Vignuzzi</name>
</author>
<author>
<name sortKey="Stone, Jk" uniqKey="Stone J">JK Stone</name>
</author>
<author>
<name sortKey="Andino, R" uniqKey="Andino R">R Andino</name>
</author>
<author>
<name sortKey="Cameron, Ce" uniqKey="Cameron C">CE Cameron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, P" uniqKey="Gong P">P Gong</name>
</author>
<author>
<name sortKey="Peersen, Ob" uniqKey="Peersen O">OB Peersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Aa" uniqKey="Thompson A">AA Thompson</name>
</author>
<author>
<name sortKey="Albertini, Ra" uniqKey="Albertini R">RA Albertini</name>
</author>
<author>
<name sortKey="Peersen, Ob" uniqKey="Peersen O">OB Peersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prindle, Mj" uniqKey="Prindle M">MJ Prindle</name>
</author>
<author>
<name sortKey="Schmitt, Mw" uniqKey="Schmitt M">MW Schmitt</name>
</author>
<author>
<name sortKey="Parmeggiani, F" uniqKey="Parmeggiani F">F Parmeggiani</name>
</author>
<author>
<name sortKey="Loeb, La" uniqKey="Loeb L">LA Loeb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graci, Jd" uniqKey="Graci J">JD Graci</name>
</author>
<author>
<name sortKey="Gnadig, Nf" uniqKey="Gnadig N">NF Gnadig</name>
</author>
<author>
<name sortKey="Galarraga, Je" uniqKey="Galarraga J">JE Galarraga</name>
</author>
<author>
<name sortKey="Castro, C" uniqKey="Castro C">C Castro</name>
</author>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M Vignuzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M Vignuzzi</name>
</author>
<author>
<name sortKey="Stone, Jk" uniqKey="Stone J">JK Stone</name>
</author>
<author>
<name sortKey="Arnold, Jj" uniqKey="Arnold J">JJ Arnold</name>
</author>
<author>
<name sortKey="Cameron, Ce" uniqKey="Cameron C">CE Cameron</name>
</author>
<author>
<name sortKey="Andino, R" uniqKey="Andino R">R Andino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denison, Mr" uniqKey="Denison M">MR Denison</name>
</author>
<author>
<name sortKey="Graham, Rl" uniqKey="Graham R">RL Graham</name>
</author>
<author>
<name sortKey="Donaldson, Ef" uniqKey="Donaldson E">EF Donaldson</name>
</author>
<author>
<name sortKey="Eckerle, Ld" uniqKey="Eckerle L">LD Eckerle</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mi, S" uniqKey="Mi S">S Mi</name>
</author>
<author>
<name sortKey="Durbin, R" uniqKey="Durbin R">R Durbin</name>
</author>
<author>
<name sortKey="Huang, Hv" uniqKey="Huang H">HV Huang</name>
</author>
<author>
<name sortKey="Rice, Cm" uniqKey="Rice C">CM Rice</name>
</author>
<author>
<name sortKey="Stollar, V" uniqKey="Stollar V">V Stollar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheidel, Lm" uniqKey="Scheidel L">LM Scheidel</name>
</author>
<author>
<name sortKey="Stollar, V" uniqKey="Stollar V">V Stollar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manns, Mp" uniqKey="Manns M">MP Manns</name>
</author>
<author>
<name sortKey="Foster, Gr" uniqKey="Foster G">GR Foster</name>
</author>
<author>
<name sortKey="Rockstroh, Jk" uniqKey="Rockstroh J">JK Rockstroh</name>
</author>
<author>
<name sortKey="Zeuzem, S" uniqKey="Zeuzem S">S Zeuzem</name>
</author>
<author>
<name sortKey="Zoulim, F" uniqKey="Zoulim F">F Zoulim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cummings, Kj" uniqKey="Cummings K">KJ Cummings</name>
</author>
<author>
<name sortKey="Lee, Sm" uniqKey="Lee S">SM Lee</name>
</author>
<author>
<name sortKey="West, Es" uniqKey="West E">ES West</name>
</author>
<author>
<name sortKey="Cid Ruzafa, J" uniqKey="Cid Ruzafa J">J Cid-Ruzafa</name>
</author>
<author>
<name sortKey="Fein, Sg" uniqKey="Fein S">SG Fein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, Gl" uniqKey="Davis G">GL Davis</name>
</author>
<author>
<name sortKey="Esteban Mur, R" uniqKey="Esteban Mur R">R Esteban-Mur</name>
</author>
<author>
<name sortKey="Rustgi, V" uniqKey="Rustgi V">V Rustgi</name>
</author>
<author>
<name sortKey="Hoefs, J" uniqKey="Hoefs J">J Hoefs</name>
</author>
<author>
<name sortKey="Gordon, Sc" uniqKey="Gordon S">SC Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccormick, Jb" uniqKey="Mccormick J">JB McCormick</name>
</author>
<author>
<name sortKey="King, Ij" uniqKey="King I">IJ King</name>
</author>
<author>
<name sortKey="Webb, Pa" uniqKey="Webb P">PA Webb</name>
</author>
<author>
<name sortKey="Scribner, Cl" uniqKey="Scribner C">CL Scribner</name>
</author>
<author>
<name sortKey="Craven, Rb" uniqKey="Craven R">RB Craven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, Cb" uniqKey="Hall C">CB Hall</name>
</author>
<author>
<name sortKey="Walsh, Ee" uniqKey="Walsh E">EE Walsh</name>
</author>
<author>
<name sortKey="Hruska, Jf" uniqKey="Hruska J">JF Hruska</name>
</author>
<author>
<name sortKey="Betts, Rf" uniqKey="Betts R">RF Betts</name>
</author>
<author>
<name sortKey="Hall, Wj" uniqKey="Hall W">WJ Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wyde, Pr" uniqKey="Wyde P">PR Wyde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouvet, M" uniqKey="Bouvet M">M Bouvet</name>
</author>
<author>
<name sortKey="Debarnot, C" uniqKey="Debarnot C">C Debarnot</name>
</author>
<author>
<name sortKey="Imbert, I" uniqKey="Imbert I">I Imbert</name>
</author>
<author>
<name sortKey="Selisko, B" uniqKey="Selisko B">B Selisko</name>
</author>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Cai, H" uniqKey="Cai H">H Cai</name>
</author>
<author>
<name sortKey="Pan, J" uniqKey="Pan J">J Pan</name>
</author>
<author>
<name sortKey="Xiang, N" uniqKey="Xiang N">N Xiang</name>
</author>
<author>
<name sortKey="Tien, P" uniqKey="Tien P">P Tien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Tao, J" uniqKey="Tao J">J Tao</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Wu, A" uniqKey="Wu A">A Wu</name>
</author>
<author>
<name sortKey="Su, C" uniqKey="Su C">C Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fortune, Jm" uniqKey="Fortune J">JM Fortune</name>
</author>
<author>
<name sortKey="Pavlov, Yi" uniqKey="Pavlov Y">YI Pavlov</name>
</author>
<author>
<name sortKey="Welch, Cm" uniqKey="Welch C">CM Welch</name>
</author>
<author>
<name sortKey="Johansson, E" uniqKey="Johansson E">E Johansson</name>
</author>
<author>
<name sortKey="Burgers, Pm" uniqKey="Burgers P">PM Burgers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karthikeyan, R" uniqKey="Karthikeyan R">R Karthikeyan</name>
</author>
<author>
<name sortKey="Vonarx, Ej" uniqKey="Vonarx E">EJ Vonarx</name>
</author>
<author>
<name sortKey="Straffon, Af" uniqKey="Straffon A">AF Straffon</name>
</author>
<author>
<name sortKey="Simon, M" uniqKey="Simon M">M Simon</name>
</author>
<author>
<name sortKey="Faye, G" uniqKey="Faye G">G Faye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reha Krantz, Lj" uniqKey="Reha Krantz L">LJ Reha-Krantz</name>
</author>
<author>
<name sortKey="Stocki, S" uniqKey="Stocki S">S Stocki</name>
</author>
<author>
<name sortKey="Nonay, Rl" uniqKey="Nonay R">RL Nonay</name>
</author>
<author>
<name sortKey="Dimayuga, E" uniqKey="Dimayuga E">E Dimayuga</name>
</author>
<author>
<name sortKey="Goodrich, Ld" uniqKey="Goodrich L">LD Goodrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morrison, A" uniqKey="Morrison A">A Morrison</name>
</author>
<author>
<name sortKey="Sugino, A" uniqKey="Sugino A">A Sugino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shcherbakova, Pv" uniqKey="Shcherbakova P">PV Shcherbakova</name>
</author>
<author>
<name sortKey="Pavlov, Yi" uniqKey="Pavlov Y">YI Pavlov</name>
</author>
<author>
<name sortKey="Chilkova, O" uniqKey="Chilkova O">O Chilkova</name>
</author>
<author>
<name sortKey="Rogozin, Ib" uniqKey="Rogozin I">IB Rogozin</name>
</author>
<author>
<name sortKey="Johansson, E" uniqKey="Johansson E">E Johansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perales, C" uniqKey="Perales C">C Perales</name>
</author>
<author>
<name sortKey="Martin, V" uniqKey="Martin V">V Martin</name>
</author>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidwell, Rw" uniqKey="Sidwell R">RW Sidwell</name>
</author>
<author>
<name sortKey="Huffman, Jh" uniqKey="Huffman J">JH Huffman</name>
</author>
<author>
<name sortKey="Khare, Gp" uniqKey="Khare G">GP Khare</name>
</author>
<author>
<name sortKey="Allen, Lb" uniqKey="Allen L">LB Allen</name>
</author>
<author>
<name sortKey="Witkowski, Jt" uniqKey="Witkowski J">JT Witkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furuta, Y" uniqKey="Furuta Y">Y Furuta</name>
</author>
<author>
<name sortKey="Takahashi, K" uniqKey="Takahashi K">K Takahashi</name>
</author>
<author>
<name sortKey="Fukuda, Y" uniqKey="Fukuda Y">Y Fukuda</name>
</author>
<author>
<name sortKey="Kuno, M" uniqKey="Kuno M">M Kuno</name>
</author>
<author>
<name sortKey="Kamiyama, T" uniqKey="Kamiyama T">T Kamiyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baranovich, T" uniqKey="Baranovich T">T Baranovich</name>
</author>
<author>
<name sortKey="Wong, Ss" uniqKey="Wong S">SS Wong</name>
</author>
<author>
<name sortKey="Armstrong, J" uniqKey="Armstrong J">J Armstrong</name>
</author>
<author>
<name sortKey="Marjuki, H" uniqKey="Marjuki H">H Marjuki</name>
</author>
<author>
<name sortKey="Webby, Rj" uniqKey="Webby R">RJ Webby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfeiffer, Jk" uniqKey="Pfeiffer J">JK Pfeiffer</name>
</author>
<author>
<name sortKey="Kirkegaard, K" uniqKey="Kirkegaard K">K Kirkegaard</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Pathog</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Pathog</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plospath</journal-id>
<journal-title-group>
<journal-title>PLoS Pathogens</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-7366</issn>
<issn pub-type="epub">1553-7374</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23966862</article-id>
<article-id pub-id-type="pmc">3744431</article-id>
<article-id pub-id-type="publisher-id">PPATHOGENS-D-13-01270</article-id>
<article-id pub-id-type="doi">10.1371/journal.ppat.1003565</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Virology</subject>
<subj-group>
<subject>Mechanisms of Resistance and Susceptibility</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics</article-title>
<alt-title alt-title-type="running-head">Lethal Mutagenesis of Coronaviruses</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Smith</surname>
<given-names>Everett Clinton</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Blanc</surname>
<given-names>Hervé</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vignuzzi</surname>
<given-names>Marco</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Denison</surname>
<given-names>Mark R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, Paris, France</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Diamond</surname>
<given-names>Michael S.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Washington University School of Medicine, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>mark.denison@Vanderbilt.edu</email>
</corresp>
<fn fn-type="COI-statement">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: ECS MV MRD. Performed the experiments: ECS. Analyzed the data: ECS HB. Wrote the paper: ECS MV MRD.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>15</day>
<month>8</month>
<year>2013</year>
</pub-date>
<volume>9</volume>
<issue>8</issue>
<elocation-id>e1003565</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>5</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>7</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© 2013 Smith et al</copyright-statement>
<copyright-year>2013</copyright-year>
<copyright-holder>Smith et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<p>No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002–2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3′-to-5′ exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN−) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN− CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN− population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition, and suggest that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics in combination with RBV or RNA mutagens.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<p>RNA viruses have high mutation rates (10
<sup>−3</sup>
to 10
<sup>−5</sup>
mutations/nucleotide/round of replication), allowing for rapid viral adaptation in response to selective pressure. While RNA viruses have long been considered unable to correct mistakes during replication, CoVs such as SARS-CoV and the recently emerged MERS-CoV are important exceptions to this paradigm. All CoVs encode an exoribonuclease activity in nonstructural protein 14 (nsp14-ExoN) that is proposed to prevent and/or remove misincorporated nucleotides. Because of the demonstrated resistance of SARS-CoV to the antiviral drug ribavirin (RBV), we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. Using RBV and the RNA mutagen 5-fluorouracil (5-FU), we show that CoVs lacking ExoN activity (ExoN−) are highly susceptible to RBV and 5-FU, in contrast to wild-type (ExoN+) CoVs. The inhibitory activity of 5-FU against ExoN− viruses resulted specifically from 5-FU incorporation during viral RNA synthesis that lead to extensive mutagenesis within the viral population, and was associated with a profound decrease in virus specific infectivity. These results demonstrate the proofreading activity of ExoN during virus replication and suggest that inhibitors of ExoN activity could be broadly useful inhibitors of CoV replication in combination with RBV or RNA mutagens.</p>
</abstract>
<funding-group>
<funding-statement>This work was funded by United States National Institutes of Health grants U54-AI057157 (SERCEB; MRD), R01-AI108197 (MRD), T32-AI095202 (ECS) and by the European Union, grants ERC StG no. 242719 and FP7-IRG-2008 no. 239321 (HB, MV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="11"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>The potential for CoVs to cause significant human disease is well demonstrated, with six known HCoVs—HKU1, OC43, NL63, 229E, SARS-CoV and MERS-CoV—causing colds, pneumonia, systemic infection, and severe or lethal disease
<xref rid="ppat.1003565-Zaki1" ref-type="bibr">[1]</xref>
<xref rid="ppat.1003565-Peiris1" ref-type="bibr">[5]</xref>
. Four of these viruses have been identified in just the last 10 years, with two, SARS-CoV and MERS-CoV, causing lethal respiratory and systemic infection
<xref rid="ppat.1003565-Zaki1" ref-type="bibr">[1]</xref>
,
<xref rid="ppat.1003565-Drosten1" ref-type="bibr">[3]</xref>
<xref rid="ppat.1003565-ProMEDmail1" ref-type="bibr">[6]</xref>
. Studies over the past 10 years have expanded the known phylogenetic, geographic, and species diversity of CoVs, and support multiple emergence events of CoVs into humans from bats and other zoonotic pools
<xref rid="ppat.1003565-Vijaykrishna1" ref-type="bibr">[7]</xref>
<xref rid="ppat.1003565-Huynh1" ref-type="bibr">[10]</xref>
. The most recent evidence for CoV trans-species movement comes from the emergence of the novel MERS-CoV
<xref rid="ppat.1003565-Zaki1" ref-type="bibr">[1]</xref>
,
<xref rid="ppat.1003565-vanBoheemen1" ref-type="bibr">[11]</xref>
,
<xref rid="ppat.1003565-Bermingham1" ref-type="bibr">[12]</xref>
. From April 2012 to June 2013 MERS-CoV has caused 72 laboratory confirmed cases and up to 50% mortality from severe respiratory and systemic disease in at least 8 countries, with evidence for human-to-human transmission
<xref rid="ppat.1003565-ProMEDmail2" ref-type="bibr">[13]</xref>
. MERS-CoV is most closely related to the bat CoVs HKU4 and HKU5
<xref rid="ppat.1003565-vanBoheemen1" ref-type="bibr">[11]</xref>
, and the recently identified receptor dipeptidyl peptidase 4 (DPP4) is present on both human and bat cells
<xref rid="ppat.1003565-Raj1" ref-type="bibr">[14]</xref>
, providing a compelling argument that zoonotic CoV infections resulting in severe human disease may be more frequent events than previously thought. Because of the lack of epidemiological data, it remains unknown whether multiple introductions from a zoonotic source or human transmission of a mild or asymptomatic disease is responsible for these continuing cases of sporadic severe infections. However, based on the high mortality rates associated with SARS-CoV and those reported for MERS-CoV
<xref rid="ppat.1003565-ProMEDmail2" ref-type="bibr">[13]</xref>
, this novel virus potentially represents a serious threat to global health for which no vaccines or therapeutics currently exist.</p>
<p>CoVs contain the largest known RNA genomes (27–32 kb) and encode an array of 16 viral replicase proteins, including a 3′-to-5′ exoribonuclease (ExoN) domain within nonstructural protein 14 (nsp14)
<xref rid="ppat.1003565-Perlman1" ref-type="bibr">[2]</xref>
,
<xref rid="ppat.1003565-Minskaia1" ref-type="bibr">[15]</xref>
<xref rid="ppat.1003565-Smith1" ref-type="bibr">[17]</xref>
. Similar to the proofreading subunit (ε) of
<italic>E. coli</italic>
DNA polymerase III, CoV nsp14-ExoN is a member of the DEDD superfamily of DNA and RNA exonucleases
<xref rid="ppat.1003565-Minskaia1" ref-type="bibr">[15]</xref>
,
<xref rid="ppat.1003565-Zuo1" ref-type="bibr">[18]</xref>
. This superfamily contains four conserved D-E-D-D acidic residues that are required for enzymatic activity, and mutation of these critical residues within CoV ExoN ablates or significantly reduces ExoN activity
<xref rid="ppat.1003565-Minskaia1" ref-type="bibr">[15]</xref>
. Studies from our group have demonstrated that ExoN activity is essential for high-fidelity replication in both the model CoV murine hepatitis virus (MHV) and SARS-CoV
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
,
<xref rid="ppat.1003565-Eckerle2" ref-type="bibr">[20]</xref>
. Inactivation of ExoN activity due to alanine substitution of the first two active site residues results in 15- to 20-fold reduced replication fidelity in cell culture
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
,
<xref rid="ppat.1003565-Eckerle2" ref-type="bibr">[20]</xref>
and a 12-fold reduction during SARS-CoV infection
<italic>in vivo</italic>
<xref rid="ppat.1003565-Graham1" ref-type="bibr">[21]</xref>
, associated with profound and stable attenuation of SARS-CoV virulence and replication. A recent study has shown that bacterially-expressed SARS-CoV nsp14-ExoN can remove mismatched nucleotides
<italic>in vitro</italic>
, and that ExoN activity is stimulated
<italic>in vitro</italic>
through interactions with the non-enzymatic CoV protein nsp10
<xref rid="ppat.1003565-Bouvet1" ref-type="bibr">[22]</xref>
. Thus all bioinformatic, genetic and biochemical studies to date support the hypothesis that nsp14-ExoN is the first identified proofreading enzyme for an RNA virus and functions together with other CoV replicase proteins to perform the crucial role of maintaining CoV replication fidelity.</p>
<p>Retrospective clinical studies during the SARS epidemic ultimately concluded that treatment with ribavirin (RBV), an antiviral drug shown to be mutagenic for some RNA viruses
<xref rid="ppat.1003565-Crotty1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1003565-Crotty2" ref-type="bibr">[24]</xref>
, was ineffective against SARS-CoV
<xref rid="ppat.1003565-Chiou1" ref-type="bibr">[25]</xref>
<xref rid="ppat.1003565-Stockman1" ref-type="bibr">[28]</xref>
. Because ExoN activity is required for CoV high-fidelity replication
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
<xref rid="ppat.1003565-Graham1" ref-type="bibr">[21]</xref>
, we sought to determine if ExoN was responsible for CoV resistance to RNA mutagens. Using the nucleoside analog RBV and the base analog 5-fluorouracil (5-FU;
<xref rid="ppat.1003565-GrandePerez1" ref-type="bibr">[29]</xref>
) we show that CoVs lacking ExoN activity (ExoN−) are up to 300-fold more sensitive to inhibition than wild-type CoVs (ExoN+). Additionally, using full-genome next-generation sequencing we show that ExoN− viruses accumulate 15- to 20-fold more A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Ultimately our results suggest the exciting possibility that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics, especially when used in combination with RBV or RNA mutagens.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Cell culture and viruses</title>
<p>Murine astrocytoma delayed brain tumor cells (DBT cells) were grown at 37°C and maintained in DMEM (Invitrogen) containing 10% FBS, supplemented with penicillin, streptomycin, HEPES, and amphotericin B. VeroE6 (Vero) cells were grown at 37°C and maintained in MEM (Invitrogen) containing 10% FBS supplemented with penicillin, streptomycin, and amphotericin B. All work with MHV was performed using the reverse genetics infectious clone based on strain MHV-A59
<xref rid="ppat.1003565-Yount1" ref-type="bibr">[30]</xref>
, and work with SARS-CoV was performed using the reverse genetics infectious clone based on the Urbani strain
<xref rid="ppat.1003565-Yount2" ref-type="bibr">[31]</xref>
. Viral studies using SARS-CoV were performed in Select Agent certified BSL-3 laboratories using protocols reviewed and approved by the Institutional Biosafety Committee of Vanderbilt University and the Centers for Disease Control for the safe study and maintenance of SARS-CoV.</p>
</sec>
<sec id="s2b">
<title>Compounds and cell viability studies</title>
<p>5-fluorouracil (5-FU), ribavirin (RBV), guanosine (GUA) and mycophenolic acid (MPA) were obtained from Sigma. 5-FU and RBV were made as 200 mM stock solutions, and were prepared in DMSO and sterile water, respectively. GUA and MPA were prepared in DMSO as 40 mM or 100 mM stocks, respectively. Low concentration (µM) working stocks were prepared as needed in sterile water prior to dilution in DMEM. Viability of DBT and Vero cells was assessed using CellTiter-Glo (Promega) in 96-well plate format according to manufacturer's instructions. DBT and Vero cells were seeded into opaque tissue culture grade 96-well plates, and DMEM containing RBV or 5-FU was added to each well to achieve the concentrations indicated. Water or DMSO vehicle controls were performed, in addition to a 20% ethanol control for cell death. The cells were then incubated at 37°C for either 12 or 24 h, and cell viability was determined using a Veritas Microplate Luminometer (Promega). The resultant values were then normalized to untreated cells.</p>
</sec>
<sec id="s2c">
<title>Drug sensitivity studies and plaque assays</title>
<p>Subconfluent monolayers of DBT cells in 6-well plates were pretreated for 30 min at 37°C with 1 mL of DMEM containing vehicle or the indicated concentration of RBV, 5-FU, MPA, or GUA. The drug was then removed and cells were infected with MHV-ExoN+ or ExoN− viruses at an MOI of 1 plaque forming units (PFU)/cell (single-cycle) or 0.01 (multi-cycle) for 30 min at 37°C. Virus was then removed and 1 mL of DMEM containing vehicle, RBV, 5-FU, MPA, or GUA was added to each well. Cells were then incubated at 37°C for either 12 (single-cycle) or 24 (multi-cycle) h. The supernatant was harvested and virus titer was determined by plaque assay on DBT cells. For SARS-CoV studies, subconfluent monolayers of Vero cells in T25 flasks were pretreated for 30 min at 37°C with DMEM containing vehicle, RBV, or 5-FU. The drug was removed and cells were infected with either SARS-ExoN+ or ExoN− viruses at an MOI of 0.1 PFU/cell (single-cycle) for 30 min. The virus was removed and DMEM containing vehicle, RBV, or 5-FU was added back. Cells were then incubated for 24 h, at which point the supernatant was harvested and virus titer was determined by plaque assay on Vero cells. All treated samples were normalized to the untreated vehicle control, and values were expressed as fold change from untreated virus titers.</p>
</sec>
<sec id="s2d">
<title>Real-time quantitative reverse transcription PCR (real-time qRT-PCR) of viral genomic RNA</title>
<p>Viral RNA was harvested from infected cell monolayers using TRIzol reagent (Invitrogen), and was reverse transcribed (RT) using SuperScript III (Invitrogen). Random hexamers (1 µL of 50 µM stock) and 1 µg of total RNA were incubated for 5 min at 70°C. The remaining reagents were then added according to the manufacturer's protocol, and the mixture was incubated at 50°C for 1 h and then at 85°C for 5 min. All RT reactions were performed in a final volume of 20 µL. Real-time qRT-PCR was performed on the RT product using the Applied Biosciences 7500 Real-Time PCR System with Power SYBR Green PCR Master Mix (Life Technologies). Each reaction was performed in a total volume of 25 µL containing 12.5 µL of the Power SYBR Green PCR Master Mix, 125 ng each of the forward and reverse primers and 1 µL of the RT product which was diluted 1∶1000. Viral genomic RNA was detected using primers (forward:
<named-content content-type="gene">ACAGGGTGGAGTTCCCGTTA</named-content>
and reverse:
<named-content content-type="gene">ACGGAAGCACCACCATAAGA</named-content>
) optimized to generate a ∼120 nt portion of ORF1a. These values were normalized using the 2
<sup>−ΔΔCt</sup>
method
<xref rid="ppat.1003565-Livak1" ref-type="bibr">[32]</xref>
to endogenous expression of the housekeeping gene glyceraldehyde-3- phosphate dehydrogenase (GAPDH) using primers (forward:
<named-content content-type="gene">GGGTGTGAACCACGAGAAAT</named-content>
and reverse:
<named-content content-type="gene">CCTTCCACAATGCCAAAGTT</named-content>
) optimized to yield a ∼120 nt portion of GAPDH
<xref rid="ppat.1003565-Donaldson1" ref-type="bibr">[33]</xref>
,
<xref rid="ppat.1003565-Donaldson2" ref-type="bibr">[34]</xref>
. Triplicate wells of each sample were analyzed, and averaged into one value representing a single replicate to minimize well-to-well variation. The cycle parameters were as follows: Stage 1, (1 rep) at 50°C for 2 min; Stage 2, (1 rep) 95°C for 10 min; Stage 3, (40 reps) at 95°C for 15 sec and 57°C for 1 min. One representative product from each treatment was verified by melting curve analysis and agarose gel electrophoresis.</p>
</sec>
<sec id="s2e">
<title>Amplicon preparation for deep sequencing of whole viral genomes</title>
<p>Viral RNA from SARS-ExoN+ or ExoN− infected Vero monolayers was harvested using TRIzol reagent, and was reverse transcribed (RT) using SuperScript III as described above except with 5 µL of random hexamers (50 µM stock), 5 µg of total RNA, and in a final volume of 100 µL for each reaction. Four microliters of RT product was then used to generate 12 overlapping ∼3 kb amplicons for each virus treated with either 0 or 400 µM 5-FU by PCR. The high-fidelity polymerase Easy A (Agilent) was used to ensure that errors were minimal during PCR. All primer sets generated single bands which were then purified using the Wizard SV Gel and PCR Clean-Up System (Promega).</p>
</sec>
<sec id="s2f">
<title>Illumina next generation sequencing and analysis</title>
<p>Prior to sequencing, cDNA amplicons were fragmented (Fragmentase, NEB), clustered, and sequenced with Illumina cBot and GAIIX technology as previously described
<xref rid="ppat.1003565-Gnadig1" ref-type="bibr">[35]</xref>
. Between 1.4×10
<sup>8</sup>
and 4.5×10
<sup>8</sup>
bases, comprised of ∼69-nt reads, were obtained per virus, and CASAVA 1.8.2 was used to demultiplex and create the fastq files. Low quality bases from the ends of each sequence read were then trimmed, using
<italic>Phred</italic>
scores as the guiding metric (error probabilities higher than 0.001), and sequences with less than 16 bases after trimming were discarded to reduce false alignment and subsequent false variant calls. The program fastq-clipper (
<ext-link ext-link-type="uri" xlink:href="http://hannonlab.cshl.edu/fastx_toolkit/index.html">http://hannonlab.cshl.edu/fastx_toolkit/index. html</ext-link>
) was used for this quality filtering. The Burrows-Wheeler Alignment tool was then used to align reads to the SARS-CoV ExoN+ or ExoN− reference genomes with a maximum of two mismatches per read
<xref rid="ppat.1003565-Li1" ref-type="bibr">[36]</xref>
. Base calling at each position was determined using SAMTOOLS
<xref rid="ppat.1003565-Li2" ref-type="bibr">[37]</xref>
. After the pileup, an in-house script collected the data per-position. For each position throughout the viral genome, the bases and their qualities were gathered, each variant allele's rate was initially modified according to its covering read qualities based on a maximum likelihood estimation and test for significance using Wilks' theorem. Additionally, an allele confidence interval was calculated and output for each allele. Only alleles with statistically significant p<0.05 values were retained and considered to be true variants. Above 0.01% all variants were found to be statistically significant, while below 0.01% many variants could not be distinguished from background error. Thus, the background noise caused by sequencing error was determined to be 0.01% or less.</p>
</sec>
<sec id="s2g">
<title>Statistical analysis</title>
<p>Statistical tests were applied where noted within the figure legends and were determined using GraphPad Prism (La Jolla, CA) software. Statistical significance is denoted (*P<0.05, **P<0.01, ***P<0.0001) and was determined using an unpaired, two-tailed Student's
<italic>t</italic>
test compared to either untreated samples or to the corresponding ExoN+ sample. For the cell viability studies, treated samples were compared to the DMEM sample containing DMSO.</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>MHV-ExoN− viruses have increased sensitivity to RBV</title>
<p>Because RBV has been shown to be incorporated as ribavirin monophosphate (RMP) into viral RNA during replication
<xref rid="ppat.1003565-Crotty1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1003565-Crotty2" ref-type="bibr">[24]</xref>
,
<xref rid="ppat.1003565-Crotty3" ref-type="bibr">[38]</xref>
<xref rid="ppat.1003565-Sierra1" ref-type="bibr">[42]</xref>
, the presence of a proofreading enzyme would be predicted to exclude and/or remove nucleotide misincorporation
<xref rid="ppat.1003565-Kamiya1" ref-type="bibr">[43]</xref>
<xref rid="ppat.1003565-Arnold1" ref-type="bibr">[47]</xref>
. If ExoN is responsible for the resistance phenotype, viruses lacking ExoN activity (ExoN−) should demonstrate increased titer reduction following RBV treatment as compared to wild-type viruses containing ExoN activity (ExoN+). To test this hypothesis, we examined the sensitivity of MHV-ExoN+ and ExoN− viruses to RBV during single-cycle (MOI = 1 PFU/cell) replication in murine astrocytoma delayed brain tumor cells (DBT cells). No toxicity was observed in DBT cells following treatment with up to 400 µM RBV (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1A</xref>
). MHV-ExoN+ viruses were resistant to 10 µM RBV (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1B</xref>
), while MHV-ExoN− virus titers decreased by ∼200-fold following treatment with 10 µM RBV. The capacity of 10 µM RBV to inhibit MHV-ExoN− replication is surprising because at least 10-fold higher concentrations of RBV are required to inhibit poliovirus and chikungunya viruses
<xref rid="ppat.1003565-Coffey1" ref-type="bibr">[48]</xref>
<xref rid="ppat.1003565-Pfeiffer1" ref-type="bibr">[50]</xref>
. This observation could be due to the longer genomes of CoVs or to the mechanism(s) by which RBV inhibits CoV replication.</p>
<fig id="ppat-1003565-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003565.g001</object-id>
<label>Figure 1</label>
<caption>
<title>The antiviral activity of RBV against ExoN− viruses is not primarily due to mutagenesis.</title>
<p>(
<bold>A</bold>
) DBT cells in 96-well plates were incubated with DMEM alone, or DMEM containing 20% ethanol (EtOH), 4% DMSO, or the indicated concentration of RBV for 12 h. Cell viability was determined using CellTiter-Glo (Promega) according to manufacturer's instructions. All values were normalized to the untreated (DMEM) control. No significant differences were found when RBV-treated values were compared to DMEM samples containing DMSO (+DMSO) using an unpaired, two-tailed Student's
<italic>t</italic>
test. Mean values ± S.E.M. are shown, n = 2. (
<bold>B</bold>
) MHV-ExoN+ (filled circle) and MHV-ExoN− (open circle) virus sensitivity to RBV during single- (solid lines; MOI = 1 PFU/cell) and multi-cycle (dotted lines; MOI = 0.01 PFU/cell) replication. MHV-ExoN+ viruses are shown in blue and MHV-ExoN− viruses are shown in green. The change in virus titer was calculated by dividing virus titers following treatment by the untreated controls. Mean values ± S.E.M. are shown, n = 4. (
<bold>C</bold>
) The change in titer (filled bars) and genomic RNA levels (hatched bars) of MHV-ExoN+ (blue) and MHV-ExoN− (green) viruses following treatment with RBV is shown. DBT cells were infected with MHV-ExoN+ or MHV-ExoN− in the presence or absence of RBV, and virus titer was determined by plaque assay. Genomic RNA levels were determined using two-step real-time qRT-PCR and primers optimized to amplify a ∼120 nt region of ORF1a
<xref rid="ppat.1003565-Donaldson1" ref-type="bibr">[33]</xref>
. The change in genomic RNA levels (2
<sup>−ΔΔCt</sup>
) is shown relative to endogenous GAPDH expression and was normalized to RNA levels from untreated samples. Mean values ± S.E.M. are shown, n = 6. (
<bold>D</bold>
) MHV-ExoN+ (filled circle) and MHV-ExoN− (open circle) virus sensitivity to mycophenolic acid (MPA) during single- (solid lines; MOI = 1 PFU/cell) and multi-cycle (dotted lines; MOI = 0.01 PFU/cell) replication. Mean values ± S.E.M. are shown, n = 2–4. RBV- or MPA-treated MHV-ExoN+ (
<bold>E</bold>
) and MHV-ExoN− (
<bold>F</bold>
) viruses with or without the addition of 100 µM guanosine (GUA) during single-cycle replication (MOI = 1 PFU/cell). Mean values ± S.E.M. are shown, n = 2. For all parts, statistical significance was determined using an unpaired, two-tailed Student's
<italic>t</italic>
test (*P<0.05, **P<0.01, ***P<0.0001).</p>
</caption>
<graphic xlink:href="ppat.1003565.g001"></graphic>
</fig>
</sec>
<sec id="s3b">
<title>The antiviral activity of RBV against ExoN− viruses is not primarily due to mutagenesis</title>
<p>If RBV is exerting antiviral activity primarily through mutagenesis following incorporation of RMP, MHV-ExoN− viruses should exhibit increased sensitivity during multi-cycle replication. To test this, we determined the sensitivity of MHV-ExoN+ and ExoN− viruses to RBV at a low multiplicity of infection (MOI = 0.01 PFU/cell). Unexpectedly, multi-cycle replication of MHV-ExoN− viruses in the presence of RBV (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1B</xref>
) was indistinguishable from single-cycle replication.</p>
<p>RBV has been reported to exert antiviral activity through numerous mechanisms
<xref rid="ppat.1003565-Crotty3" ref-type="bibr">[38]</xref>
including disruption of viral RNA synthesis and inhibition of the cellular enzyme inosine monophosphate dehydrogenase (IMPDH). To determine if RBV treatment was affecting CoV RNA synthesis, we performed two-step real-time quantitative reverse transcription PCR (real-time qRT-PCR) to determine viral genomic RNA levels in the presence or absence of RBV. Similar to
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1B</xref>
, MHV-ExoN+ titers were unaffected, whereas there was a dose-dependent reduction in MHV-ExoN− titers following RBV treatment (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1C</xref>
, filled bars). Corresponding dose-dependent reductions in MHV-ExoN− genomic RNA were observed (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1C</xref>
, hatched bars) following RBV treatment, demonstrating that treatment with 10 µM RBV decreased MHV-ExoN− RNA synthesis by nearly 100-fold during replication. Because RBV caused decreased RNA synthesis in MHV-ExoN− viruses, we calculated the relative specific infectivities of both viruses at each RBV concentration (
<xref ref-type="table" rid="ppat-1003565-t001">Table 1</xref>
). The relative specific infectivity of MHV-ExoN− viruses was decreased by 6- to 9-fold following treatment with RBV, while MHV-ExoN+ viruses were unaffected.</p>
<table-wrap id="ppat-1003565-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003565.t001</object-id>
<label>Table 1</label>
<caption>
<title>Relative specific infectivities of MHV-ExoN+ and ExoN− viruses following treatment with RBV or 5-FU.</title>
</caption>
<alternatives>
<graphic id="ppat-1003565-t001-1" xlink:href="ppat.1003565.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Virus</td>
<td align="left" rowspan="1" colspan="1">RBV(µM)</td>
<td align="left" rowspan="1" colspan="1">Relative Specific Infectivity</td>
<td align="left" rowspan="1" colspan="1">Fold Decrease</td>
<td align="left" rowspan="1" colspan="1">5-FU (µM)</td>
<td align="left" rowspan="1" colspan="1">Relative Specific Infectivity</td>
<td align="left" rowspan="1" colspan="1">Fold Decrease</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">MHV-ExoN+</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">1.2±0.1</td>
<td align="left" rowspan="1" colspan="1">0.84±0.06</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">0.33±0.05</td>
<td align="left" rowspan="1" colspan="1">3.4±0.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">1.9±0.2</td>
<td align="left" rowspan="1" colspan="1">0.56±0.05</td>
<td align="left" rowspan="1" colspan="1">200</td>
<td align="left" rowspan="1" colspan="1">0.24±0.03</td>
<td align="left" rowspan="1" colspan="1">4.5±0.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MHV-ExoN−</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">0.19±0.04</td>
<td align="left" rowspan="1" colspan="1">6.0±0.7
<sup>***</sup>
</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">0.10±0.03</td>
<td align="left" rowspan="1" colspan="1">13.6±2.9
<sup>**</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.26±0.11</td>
<td align="left" rowspan="1" colspan="1">9.1±3.0
<sup>*</sup>
</td>
<td align="left" rowspan="1" colspan="1">200</td>
<td align="left" rowspan="1" colspan="1">0.012±0.004</td>
<td align="left" rowspan="1" colspan="1">128±29
<sup>**</sup>
</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<p>Relative specific infectivity values were calculated using the data shown in
<xref ref-type="fig" rid="ppat-1003565-g001">Figures 1C</xref>
and
<xref ref-type="fig" rid="ppat-1003565-g002">2C</xref>
and represent the change in virus titer divided by the change in virus genome for each sample. All values are shown relative to untreated virus. The mean value and standard error for each sample is shown (Student's
<italic>t</italic>
test, n = 4, *P<0.05, **P<0.01, ***P<0.0001).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>In addition to decreasing viral RNA synthesis, RBV could be exerting antiviral activity against MHV-ExoN− through competitive inhibition of IMPDH by RMP
<xref rid="ppat.1003565-Streeter1" ref-type="bibr">[51]</xref>
. To test this possible mechanism, we treated MHV-ExoN+ and MHV-ExoN− viruses with the specific IMPDH inhibitor mycophenolic acid (MPA;
<xref rid="ppat.1003565-Carter1" ref-type="bibr">[52]</xref>
<xref rid="ppat.1003565-Franklin1" ref-type="bibr">[54]</xref>
) during both single- and multi-cycle replication. A concentration-dependent decrease in MHV-ExoN− virus titer was observed following MPA treatment during single-cycle replication (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1D</xref>
). MHV-ExoN+ titers were reduced by less than 10-fold, consistent with what was observed following RBV treatment (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1B</xref>
). Similar to RBV, increased sensitivity of MHV-ExoN− viruses to MPA was not observed during multi-cycle replication. If RBV is acting via IMDPH inhibition, addition of extracellular guanosine (GUA) should restore virus titers, as has been demonstrated previously for Dengue virus
<xref rid="ppat.1003565-Takhampunya1" ref-type="bibr">[55]</xref>
. Addition of 100 µM GUA following RBV or MPA pretreatment and viral infection had no effect on MHV-ExoN+ viruses (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1E</xref>
), but completely restored MHV-ExoN− titer even in the continued presence of 10 µM RBV or 1 µM MPA (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1F</xref>
). These data indicate that the antiviral activity of RBV against MHV-ExoN− viruses is occurring at least in part through decreasing viral RNA synthesis and inhibition of IMPDH. Because our primary goal was to test the role of nsp14-ExoN in the prevention and/or removal of nucleotide misincorporation we did not further investigate how RBV was specifically inhibiting ExoN− viruses. However, these results do show that the presence of ExoN activity is capable of preventing RBV inhibition of CoV replication.</p>
</sec>
<sec id="s3c">
<title>The increased sensitivity of MHV-ExoN− viruses to 5-FU treatment is consistent with mutagenesis</title>
<p>We next examined the sensitivity of MHV-ExoN+ and ExoN− viruses to the pyrimidine base analog 5-FU, which has been shown to be mutagenic for many RNA viruses
<xref rid="ppat.1003565-GrandePerez1" ref-type="bibr">[29]</xref>
,
<xref rid="ppat.1003565-Domingo1" ref-type="bibr">[56]</xref>
. Treatment of DBT cells with up to 400 µM 5-FU did not result in any detectable cellular toxicity (
<xref ref-type="fig" rid="ppat-1003565-g002">Figure 2A</xref>
). Following treatment with up to 200 µM 5-FU (
<xref ref-type="fig" rid="ppat-1003565-g002">Figure 2B</xref>
) during single-cycle infections, MHV-ExoN+ titers were inhibited less than 3-fold, while titers of MHV-ExoN− decreased ∼900 fold, representing a ∼300-fold increase in sensitivity as compared to MHV-ExoN+. During multi-cycle replication, MHV-ExoN+ virus titers were reduced by less than 10-fold following 5-FU treatment, while MHV-ExoN− showed a ∼50,000-fold reduction in titer (
<xref ref-type="fig" rid="ppat-1003565-g002">Figure 2B</xref>
). Virus was undetectable by plaque assay at 5-FU concentrations above 80 µM. Analysis of viral RNA synthesis by two-step real-time qRT-PCR demonstrated that MHV-ExoN+ RNA levels were not reduced following 5-FU treatment, while 5-FU treatment resulted in minimal two-to-five fold decreases in MHV-ExoN− RNA (
<xref ref-type="fig" rid="ppat-1003565-g002">Figure 2C</xref>
). The specific infectivity of MHV-ExoN− was decreased by 14- and 128-fold following treatment with 100 µM and 200 µM 5-FU, respectively (
<xref ref-type="table" rid="ppat-1003565-t001">Table 1</xref>
). These results demonstrate that ExoN activity confers resistance to 5-FU, and support the hypothesis that 5-FU is driving increased genomic mutagenesis in MHV-ExoN− virus populations, leading to lethal mutagenesis and extinction.</p>
<fig id="ppat-1003565-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003565.g002</object-id>
<label>Figure 2</label>
<caption>
<title>The increased sensitivity of MHV-ExoN− viruses to 5-FU is consistent with mutagenesis.</title>
<p>(
<bold>A</bold>
) DBT cells in 96-well plates were incubated with DMEM alone, or DMEM containing 20% ethanol (EtOH), 4% DMSO, or the indicated concentration of 5-FU for 12 h. Cell viability was determined using CellTiter-Glo (Promega) according to manufacturer's instructions. All values were normalized to the untreated (DMEM) control. Mean values ± S.E.M. are shown, n = 2. (
<bold>B</bold>
) MHV-ExoN+ (filled circle) and MHV-ExoN− (open circle) virus sensitivity to 5-FU during single- (solid lines; MOI = 1 PFU/cell) and multi-cycle (dotted lines; MOI = 0.01 PFU/cell) replication. MHV-ExoN+ viruses are shown in blue and MHV-ExoN− viruses are shown in green. The change in virus titer was calculated by dividing virus titers following treatment by the untreated controls. Mean values ± S.E.M. are shown, n = 4. (
<bold>C</bold>
) The change in titer (filled bars) and genomic RNA levels (hatched bars) of MHV-ExoN+ (blue) and MHV-ExoN− (green) viruses following treatment with 5-FU is shown. DBT cells were infected with MHV-ExoN+ or MHV-ExoN− in the presence or absence of 5-FU, and virus titer was determined by plaque assay. Genomic RNA levels were determined using two-step real-time qRT-PCR and primers optimized to amplify a ∼120 nt region of ORF1a
<xref rid="ppat.1003565-Donaldson1" ref-type="bibr">[33]</xref>
. The change in genomic RNA levels (2
<sup>−ΔΔCt</sup>
) is shown relative to endogenous GAPDH expression and was normalized to RNA levels from untreated samples. Mean values ± S.E.M. are shown, n = 6. For all parts, statistical significance was determined using an unpaired, two-tailed Student's
<italic>t</italic>
test (*P<0.05, **P<0.01, ***P<0.0001).</p>
</caption>
<graphic xlink:href="ppat.1003565.g002"></graphic>
</fig>
</sec>
<sec id="s3d">
<title>SARS-ExoN− viruses are sensitive to 5-FU treatment</title>
<p>To determine whether SARS-CoV viruses lacking ExoN activity (SARS-ExoN−) also were inhibited by RBV and 5-FU, we infected Vero cells with either SARS-ExoN+ or ExoN− viruses in the presence or absence of RBV or 5-FU. Treatment of Vero cells with up to 400 µM RBV or 5-FU did not decrease cell viability by more than 20% (
<xref ref-type="fig" rid="ppat-1003565-g003">Figure 3A</xref>
). Recent reports have described the lack of RBV uptake by Vero cells due to the absence of specific equilibrative nucleoside transporters
<xref rid="ppat.1003565-Ibarra1" ref-type="bibr">[57]</xref>
,
<xref rid="ppat.1003565-Shah1" ref-type="bibr">[58]</xref>
. Additionally, previous studies have shown that RBV failed to inhibit SARS-CoV replication in Vero cells
<xref rid="ppat.1003565-Cinatl1" ref-type="bibr">[59]</xref>
. Consistent with those reports, in our experiments both SARS-ExoN+ and ExoN− viruses were unaffected by treatment with up to 400 µM RBV (
<xref ref-type="fig" rid="ppat-1003565-g003">Figure 3B</xref>
). We therefore performed subsequent experiments with 5-FU. SARS-ExoN+ titers were reduced 3- and 10-fold following treatment with 200 or 400 µM 5-FU, respectively (
<xref ref-type="fig" rid="ppat-1003565-g003">Figure 3C</xref>
). In contrast, SARS-ExoN− titers were reduced ∼300-fold by 200 µM 5-FU (
<xref ref-type="fig" rid="ppat-1003565-g003">Figure 3C</xref>
), similar to MHV-ExoN− viruses. At 400 µM 5-FU, SARS-ExoN− virus was inhibited 2,000-fold during a single replication cycle, representing a ∼160-fold increase in 5-FU sensitivity compared to SARS-ExoN+ viruses. Thus, our data indicate that increased sensitivity of CoVs to RNA mutagens in the absence of ExoN activity is conserved across diverse members of the CoV family. Of interest, our studies with SARS-ExoN+ also indicate that ExoN-mediated protection from nucleotide misincorporation can be overcome at higher concentrations of mutagen.</p>
<fig id="ppat-1003565-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003565.g003</object-id>
<label>Figure 3</label>
<caption>
<title>SARS-ExoN− viruses have increased sensitivity to 5-FU.</title>
<p>(
<bold>A</bold>
) Vero cells in 96-well plates were incubated with DMEM alone, or DMEM containing 20% ethanol (EtOH), 4% DMSO, or the indicated concentration of RBV or 5-FU for 24 h. Cell viability was determined using CellTiter-Glo (Promega) according to manufacturer's instructions. All values were normalized to the untreated (DMEM) control. Mean values ± S.E.M. are shown, n = 3. The change in SARS-ExoN+ (filled blue circles) and SARS-ExoN− (empty green circles) titers following treatment with RBV (
<bold>B</bold>
) or 5-FU (
<bold>C</bold>
) during single-cycle replication. Vero cells were infected with either virus at an MOI of 0.1 PFU/cell, and virus supernatant was harvest 24 h post-infection following replication in the presence or absence of RBV or 5-FU. Virus titer was determined by plaque assay on Vero cells. Mean values ± S.E.M. are shown, n = 2 (RBV) and n = 4 (5-FU). (
<bold>D</bold>
) Comparison of unique statistically significant (P<0.05) minority variants present between untreated and 5-FU treated samples for both SARS-ExoN+ and ExoN− populations. SARS-ExoN+ viruses are shown in blue, and SARS-ExoN− viruses are shown in green. For panels A–C statistical significance was determined using an unpaired, two-tailed Student's
<italic>t</italic>
test (*P<0.05, **P<0.01, ***P<0.0001).</p>
</caption>
<graphic xlink:href="ppat.1003565.g003"></graphic>
</fig>
</sec>
<sec id="s3e">
<title>5-FU drives increased mutagenesis in both SARS-ExoN+ and ExoN− viruses</title>
<p>Studies with the RNA viruses lymphocytic choriomeningitis virus (LCMV), foot-and-mouth disease virus (FMDV) and vesicular stomatitis virus (VSV) have demonstrated that 5-FU is incorporated as 5-fluorouridine monophosphate (FUMP) into replicating viral RNA, thus increasing genomic mutations
<xref rid="ppat.1003565-Moreno1" ref-type="bibr">[60]</xref>
<xref rid="ppat.1003565-delaTorre1" ref-type="bibr">[62]</xref>
. To determine whether 5-FU was causing increased mutagenesis in SARS-CoV populations, we performed full-genome NGS analysis of both virus populations replicating in the presence or absence of 5-FU. To analyze the entire spectrum of mutations arising during replication, we extracted total intracellular RNA from Vero cells infected with either SARS-ExoN+ or ExoN− viruses following treatment with either 0 µM or 400 µM 5-FU. We then generated 12 overlapping cDNA amplicons of approximately 3 kb in length for each sample. For each of the four samples, 1.4×10
<sup>8</sup>
to 4.5×10
<sup>8</sup>
bases were sequenced, corresponding to an average coverage depth of between 4,600 and 15,000 at each nucleotide position. We compared the statistically significant minority variants, defined as having a p-value of ≤0.05 following a multiple-testing correction (Benjamini-Hochberg), between the untreated and 5-FU-treated SARS-ExoN+ and ExoN− populations. Following treatment with 400 µM 5-FU (
<xref ref-type="fig" rid="ppat-1003565-g003">Figure 3D</xref>
), there was an increase in mutations within the SARS-ExoN+ population from 11 to 259 (24-fold). In contrast, for SARS-ExoN− there were 3648 mutations present within the 5-FU-treated SARS-ExoN− population compared to the 99 mutations in the untreated population (40-fold increase). Most remarkably, this represented a 16-fold increase in the number of statistically significant minority variants between 5-FU treated ExoN+ and ExoN− SARS-CoV. Thus, these data support our hypothesis that 5-FU was increasing genomic mutations through incorporation of FUMP into viral genomes in the absence of ExoN activity.</p>
</sec>
<sec id="s3f">
<title>5-FU-associated A-to-G and U-to-C transitions are highly represented and distributed across the genome</title>
<p>Incorporation of FUMP instead of uracil into replicating RNA allows FUMP to base pair with both guanosine and adenine
<xref rid="ppat.1003565-Agudo2" ref-type="bibr">[61]</xref>
,
<xref rid="ppat.1003565-Agudo3" ref-type="bibr">[63]</xref>
. This decreased specificity in base pairing has been shown in studies with LCMV and primarily results in A-to-G (A:G) and U-to-C (U:C) transitions
<xref rid="ppat.1003565-GrandePerez1" ref-type="bibr">[29]</xref>
,
<xref rid="ppat.1003565-Agudo2" ref-type="bibr">[61]</xref>
,
<xref rid="ppat.1003565-Agudo3" ref-type="bibr">[63]</xref>
. To determine if FUMP was being incorporated at higher levels in the absence of ExoN-mediated proofreading, we analyzed the numbers and types of transitions and transversions occurring in each virus population (
<xref ref-type="fig" rid="ppat-1003565-g004">Figure 4</xref>
). Transitions are indicated in grey boxes and transversions in white boxes, with the number for each shown. Transversions comprised the majority of variants for both untreated ExoN− and ExoN+ viruses. Treatment with 5-FU caused the number of U:C and A:G transitions to increase in both ExoN+ and ExoN− populations, from 2 to 197 for SARS-ExoN+ and from 16 to 3304 for SARS-ExoN− (
<xref ref-type="fig" rid="ppat-1003565-g004">Figures 4A and B</xref>
). This increase and bias toward U:C and A:G transitions is consistent with FUMP being incorporated into both minus- and plus-strand RNA
<xref rid="ppat.1003565-Agudo3" ref-type="bibr">[63]</xref>
during both ExoN+ and ExoN− replication; however the absolute numbers were dramatically increased (16-fold) during ExoN− replication compared to ExoN+. In untreated cells, A:G and U:C transitions accounted for less than 25% of the total minority variants within each population (
<xref ref-type="fig" rid="ppat-1003565-g004">Figure 4C</xref>
). Following 5-FU treatment, A:G and U:C transitions accounted for 70–95% of the total minority variants within each population.</p>
<fig id="ppat-1003565-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003565.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Incorporation of FUMP results in increased U:C and A:G transitions.</title>
<p>All possible base changes are shown for SARS-ExoN+ and SARS-ExoN− viruses in panels (
<bold>A</bold>
) and (
<bold>B</bold>
), respectively. Transitions (A↔G and U↔C) are shaded in grey, and 5-FU specific transitions (U:C and A:G) are marked with an asterisk. Transversions (A↔T, A↔C, C↔G, G↔T) are shown in white boxes. All values represent the number of unique statistically significant minority variants following 5-FU treatment. (
<bold>C</bold>
) The percent of all unique statistically significant minority variants represented by transversions (filled dark grey bars), C:U and G:A transitions (filled light grey bars), and the 5-FU specific transitions A:G (hatched bars) and U:C (checkered bars) are shown following 0 or 400 µM 5-FU treatment. SARS-ExoN+ viruses are shown in blue, and SARS-ExoN− viruses are shown in green.</p>
</caption>
<graphic xlink:href="ppat.1003565.g004"></graphic>
</fig>
<p>To further examine the genomic distribution of these two transitions, we plotted the total number of A:G and U:C transitions occurring at a frequency of between 0.1% and 1% (
<xref ref-type="fig" rid="ppat-1003565-g005">Figure 5</xref>
). Approximately 75% and 90% of the total minority variants occurring at a frequency between 0.1 and 1% following 5-FU treatment were due to A:G or U:C transitions (
<xref ref-type="fig" rid="ppat-1003565-g005">Figure 5</xref>
), for the SARS-ExoN+ and ExoN− populations, respectively. In both populations, these mutations were distributed across the entire genome following treatment with 400 µM 5-FU. Thus our data provide direct evidence indicating that 5-FU drives increased genomic mutations within SARS-CoV in the absence of ExoN proofreading activity.</p>
<fig id="ppat-1003565-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1003565.g005</object-id>
<label>Figure 5</label>
<caption>
<title>5-FU-mediated U:C and A:G transitions are distributed across the CoV genome at low frequency.</title>
<p>(
<bold>A</bold>
) and (
<bold>B</bold>
) The genomic distribution of low frequency statistically significant U:C and A:G variants within the SARS-ExoN+ population following treatment with 0 or 400 µM 5-FU. (
<bold>C</bold>
) and (
<bold>D</bold>
) Same as in A and B except for the SARS-ExoN− population. For all panels, SARS-ExoN+ viruses are shown in blue, and SARS-ExoN− viruses are shown in green. U:C transitions are denoted by a diamond, whereas A:G transitions are plotted as circles.</p>
</caption>
<graphic xlink:href="ppat.1003565.g005"></graphic>
</fig>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>Viral sensitivity to RNA mutagens is determined by several factors including polymerase selectivity
<xref rid="ppat.1003565-Agudo1" ref-type="bibr">[39]</xref>
,
<xref rid="ppat.1003565-Arias1" ref-type="bibr">[40]</xref>
,
<xref rid="ppat.1003565-Arnold2" ref-type="bibr">[64]</xref>
<xref rid="ppat.1003565-Prindle1" ref-type="bibr">[67]</xref>
, mutational robustness
<xref rid="ppat.1003565-Graci1" ref-type="bibr">[68]</xref>
, and the acquisition of mutations that increase or decrease replication fidelity. Increased and decreased fidelity mutants have been described for picornaviruses and arboviruses
<xref rid="ppat.1003565-Gnadig1" ref-type="bibr">[35]</xref>
,
<xref rid="ppat.1003565-Coffey1" ref-type="bibr">[48]</xref>
,
<xref rid="ppat.1003565-Pfeiffer1" ref-type="bibr">[50]</xref>
,
<xref rid="ppat.1003565-Vignuzzi2" ref-type="bibr">[69]</xref>
, all of which have occurred in the viral RdRp. The CoV nsp14-ExoN is the first identified RNA virus protein distinct from the RdRp that affects replication fidelity
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
<xref rid="ppat.1003565-Graham1" ref-type="bibr">[21]</xref>
,
<xref rid="ppat.1003565-Denison1" ref-type="bibr">[70]</xref>
. While the G641D mutation within the chikungunya (CHIKV) nonstructural protein 2 (nsP2) has been implicated in CHIKV resistance to RBV, a direct role for this protein in fidelity regulation has not been described
<xref rid="ppat.1003565-Coffey1" ref-type="bibr">[48]</xref>
. A Sindbis virus variant containing mutations within nsP1, a viral guanylyl- and methyltransferase
<xref rid="ppat.1003565-Mi1" ref-type="bibr">[71]</xref>
, has been shown to be resistant to both RBV and MPA
<xref rid="ppat.1003565-Scheidel1" ref-type="bibr">[72]</xref>
. However, this phenotype is related to viral RNA capping and not replication fidelity
<xref rid="ppat.1003565-Scheidel1" ref-type="bibr">[72]</xref>
. In this report, we identify CoV ExoN activity as a critical determinant of viral sensitivity to RNA mutagens. Using two phylogenetically distant β-CoVs we demonstrate that this phenotype is well conserved across CoVs. Clearly, there is a profound increase both in overall mutations and in specific 5-FU-associated mutations within the ExoN− population as compared to the ExoN+ wild-type population. Furthermore, the vast majority of statistically significant mutations were distributed genome-wide at frequencies between 0.2 and 1%, providing strong evidence supporting ExoN-mediated proofreading during CoV replication. Of interest, our experiments also revealed that ExoN-mediated prevention and/or removal of misincorporated nucleotides is not absolute, especially in the setting of higher concentrations of mutagen. ExoN+ SARS-CoV populations demonstrated 24-fold more mutations following 5-FU treatment, suggesting that ExoN proofreading can be overwhelmed by higher concentrations of mutagens and likely by other nucleoside or base analogs. This raises the further possibility that ExoN may be less efficient at recognizing or removing some types of nucleoside or base analogs than others, and that such approaches to virus inhibition might be viable, particularly in combination with inhibitors that target ExoN activity.</p>
<sec id="s4a">
<title>Ribavirin activity against CoVs is not primarily due to mutagenesis</title>
<p>The antiviral nucleoside analog RBV is currently used to treat hepatitis C virus (HCV;
<xref rid="ppat.1003565-Manns1" ref-type="bibr">[73]</xref>
<xref rid="ppat.1003565-Davis1" ref-type="bibr">[75]</xref>
), Lassa virus
<xref rid="ppat.1003565-McCormick1" ref-type="bibr">[76]</xref>
and respiratory syncytial virus (RSV) infections
<xref rid="ppat.1003565-Hall1" ref-type="bibr">[77]</xref>
,
<xref rid="ppat.1003565-Wyde1" ref-type="bibr">[78]</xref>
. The potential clinical use of RBV for CoV infections is complicated by the multiple mechanisms of action that have been reported
<xref rid="ppat.1003565-Crotty3" ref-type="bibr">[38]</xref>
, and by the potential for disease exacerbation, as reported during the SARS-CoV epidemic
<xref rid="ppat.1003565-Chiou1" ref-type="bibr">[25]</xref>
<xref rid="ppat.1003565-Stockman1" ref-type="bibr">[28]</xref>
. Our data suggest that RBV primarily inhibits MHV-ExoN− virus replication through decreasing viral RNA synthesis and inhibition of IMPDH (
<xref ref-type="fig" rid="ppat-1003565-g001">Figure 1</xref>
). Inhibition of IMPDH by RMP has been shown to decrease intracellular GTP pools
<xref rid="ppat.1003565-Streeter1" ref-type="bibr">[51]</xref>
, thus altering the balance of nucleoside triphosphates (NTPs) within the cell. Decreased GTP levels could result in forced misincorporations due to NTP imbalances in the absence of ExoN activity
<xref rid="ppat.1003565-Scheidel1" ref-type="bibr">[72]</xref>
. However, the moderate 6- to 9-fold decreases in relative specific infectivity observed for MHV-ExoN− following RBV treatment (
<xref ref-type="table" rid="ppat-1003565-t001">Table 1</xref>
) suggests that mutagenesis is not the primary mechanism by which RBV is exerting an antiviral effect. An additional possibility is that the antiviral activity of RBV against ExoN− viruses is unrelated to the putative proofreading function of this enzyme. Both biochemical and cell culture studies have demonstrated that loss of ExoN activity leads to impaired RNA synthesis
<xref rid="ppat.1003565-Minskaia1" ref-type="bibr">[15]</xref>
,
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
,
<xref rid="ppat.1003565-Eckerle2" ref-type="bibr">[20]</xref>
. Furthermore, in addition to ExoN activity, nsp14 contains N7-methyltransferase (N7-MTase) activity, a critical step in RNA capping
<xref rid="ppat.1003565-Bouvet2" ref-type="bibr">[79]</xref>
,
<xref rid="ppat.1003565-Chen1" ref-type="bibr">[80]</xref>
. A recent report has demonstrated that the ExoN and N7-MTase domains are structurally inseparable, and that residues within the ExoN domain are important for N7-MTase activity
<xref rid="ppat.1003565-Chen2" ref-type="bibr">[81]</xref>
. Thus, the increased sensitivity of MHV-ExoN− to RBV could result from the impairment of undefined functions of ExoN during CoV replication, particularly during RNA synthesis. The parallel use of ExoN+ and ExoN− viruses with RBV may allow us to define how RBV is exerting an antiviral effect against CoVs and the potentially novel mechanisms by which ExoN may act to counter that inhibition.</p>
</sec>
<sec id="s4b">
<title>ExoN proofreading during CoV replication</title>
<p>Since the identification of nsp14-ExoN activity
<xref rid="ppat.1003565-Minskaia1" ref-type="bibr">[15]</xref>
and studies demonstrating the requirement for ExoN in high-fidelity replication
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
<xref rid="ppat.1003565-Graham1" ref-type="bibr">[21]</xref>
, mounting evidence points to a role for nsp14-ExoN in proofreading activity during RNA virus replication
<xref rid="ppat.1003565-Bouvet1" ref-type="bibr">[22]</xref>
. Here we used NGS to determine the number of mutations present in SARS-ExoN+ and ExoN− populations. The characteristic 5-FU-mediated transitions U:C and A:G comprised 90% of the total statistically significant minority variants within SARS-ExoN− population, and were present at levels 15- and 20-fold higher than those same transitions within the ExoN+ population (
<xref ref-type="fig" rid="ppat-1003565-g004">Figure 4</xref>
). Overall, our data represent the first direct test of ExoN proofreading during SARS-CoV replication in the absence of ExoN. Furthermore, the sequencing depth attained using NGS shows that ExoN inactivation likely skews the spectrum of spontaneous mutations present within the untreated population (
<xref ref-type="fig" rid="ppat-1003565-g004">Figure 4</xref>
). Such overrepresentation of specific mutations in the context of ExoN inactivation is similar to studies of
<italic>S. cerevisiae</italic>
DNA polymerases ε and δ containing mutations within their respective 3′-to-5′ DEDD exonucleases
<xref rid="ppat.1003565-Fortune1" ref-type="bibr">[82]</xref>
<xref rid="ppat.1003565-Shcherbakova1" ref-type="bibr">[86]</xref>
. This altered distribution due to ExoN inactivation could have profound implications for CoV adaptation and evolution.</p>
</sec>
<sec id="s4c">
<title>Nsp14-ExoN as a target for combination CoV inhibitors</title>
<p>Lethal mutagenesis occurs through the accumulation of mutations within the viral genome during replication, and ultimately results in virus extinction (reviewed in
<xref rid="ppat.1003565-Domingo1" ref-type="bibr">[56]</xref>
,
<xref rid="ppat.1003565-Perales1" ref-type="bibr">[87]</xref>
). While lethal mutagenesis has been studied extensively
<xref rid="ppat.1003565-Perales1" ref-type="bibr">[87]</xref>
, our work is the first to identify an RNA virus protein distinct from the RdRp that directly regulates the sensitivity of RNA viruses to genomic mutations resulting from mutagen incorporation. Currently, RBV is the only FDA-approved antiviral with demonstrated mutagenic activity. The first demonstration of RBV acting as a mutagen was performed using poliovirus
<xref rid="ppat.1003565-Crotty1" ref-type="bibr">[23]</xref>
,
<xref rid="ppat.1003565-Crotty2" ref-type="bibr">[24]</xref>
almost 30 years after the antiviral activity of RBV was described
<xref rid="ppat.1003565-Sidwell1" ref-type="bibr">[88]</xref>
. The nucleoside analog T-705 (Favipiravir;
<xref rid="ppat.1003565-Furuta1" ref-type="bibr">[89]</xref>
) is currently in clinical development, and has been shown recently to drive lethal mutagenesis of influenza virus
<xref rid="ppat.1003565-Baranovich1" ref-type="bibr">[90]</xref>
. We have shown that ExoN+ viruses replicate well in the presence of RBV or 5-FU. However, we also have shown that ExoN− mutants of SARS-CoV and MHV have 15-to-20-fold decreased fidelity
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
,
<xref rid="ppat.1003565-Eckerle2" ref-type="bibr">[20]</xref>
, are attenuated, are subject to rapid loss of replication and clearance
<italic>in vivo</italic>
<xref rid="ppat.1003565-Graham1" ref-type="bibr">[21]</xref>
, and are highly susceptible to low concentrations of RNA mutagens. An exciting possibility is that this conserved CoV proofreading enzyme could be targeted for inhibition, thus leading to the development of broadly useful CoV therapeutics. While ExoN inhibitors alone might be efficacious, combining an inhibitor of CoV fidelity with an RNA mutagen would magnify the intrinsic fidelity defect of ExoN inhibition and drive high-level mutagenesis. A potential advantage of such an approach would be to rapidly drive the virus to extinction, while limiting or blocking the capacity of the virus to overcome inhibition by reversion. ExoN− mutants of both MHV and SARS-CoV have shown no reversion over multiple passages in culture or during persistent infections
<italic>in vivo</italic>
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
<xref rid="ppat.1003565-Graham1" ref-type="bibr">[21]</xref>
. Furthermore, we did not observe any primary reversions within the ExoN DEDD motif following 5-FU treatment. While mutations within the CoV RdRp could emerge during acute treatment, mutations within other RNA virus RdRps have demonstrated that the maximum tolerance for increased or decreased fidelity without loss of virus viability is between ∼3- to 6-fold
<xref rid="ppat.1003565-Gnadig1" ref-type="bibr">[35]</xref>
,
<xref rid="ppat.1003565-Coffey1" ref-type="bibr">[48]</xref>
,
<xref rid="ppat.1003565-Vignuzzi2" ref-type="bibr">[69]</xref>
,
<xref rid="ppat.1003565-Pfeiffer2" ref-type="bibr">[91]</xref>
. In addition, our data demonstrate that ExoN− viruses are profoundly sensitive to inhibition by lower concentrations of mutagen, providing a possible improved therapeutic index and margin of safety for use.</p>
<p>In summary, this study provides the most direct evidence to date that CoV ExoN provides a proofreading function during virus replication, and identifies ExoN as the critical determinant of CoV sensitivity to RNA mutagens. Because CoV replication fidelity is likely determined by the concerted effort of multiple virus proteins
<xref rid="ppat.1003565-Eckerle1" ref-type="bibr">[19]</xref>
,
<xref rid="ppat.1003565-Eckerle2" ref-type="bibr">[20]</xref>
,
<xref rid="ppat.1003565-Bouvet1" ref-type="bibr">[22]</xref>
, our data suggest the exciting possibility that significant attenuation of CoV fitness and pathogenesis could be achieved by targeting the conserved process of CoV replication fidelity. Ultimately, uncovering the mechanism of fidelity regulation and methodologies to disrupt this critical process will be vital to responding to both endemic and future emerging CoVs such as SARS-CoV and MERS-CoV.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We thank Ofer Isakov and Noam Shomron at Tel Aviv University for their help in NGS bioinformatics analysis and Michelle Becker at Vanderbilt University Medical Center for critical reading of the manuscript.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ppat.1003565-Zaki1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
,
<name>
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</name>
,
<name>
<surname>Fouchier</surname>
<given-names>RA</given-names>
</name>
(
<year>2012</year>
)
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
.
<source>N Engl J Med</source>
<volume>367</volume>
:
<fpage>1814</fpage>
<lpage>1820</lpage>
.
<pub-id pub-id-type="pmid">23075143</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Perlman1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Netland</surname>
<given-names>J</given-names>
</name>
(
<year>2009</year>
)
<article-title>Coronaviruses post-SARS: update on replication and pathogenesis</article-title>
.
<source>Nat Rev Microbiol</source>
<volume>7</volume>
:
<fpage>439</fpage>
<lpage>450</lpage>
.
<pub-id pub-id-type="pmid">19430490</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Drosten1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Gunther</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Preiser</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>van der Werf</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Brodt</surname>
<given-names>HR</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Identification of a novel coronavirus in patients with severe acute respiratory syndrome</article-title>
.
<source>N Engl J Med</source>
<volume>348</volume>
:
<fpage>1967</fpage>
<lpage>1976</lpage>
.
<pub-id pub-id-type="pmid">12690091</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Ksiazek1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ksiazek</surname>
<given-names>TG</given-names>
</name>
,
<name>
<surname>Erdman</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Goldsmith</surname>
<given-names>CS</given-names>
</name>
,
<name>
<surname>Zaki</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Peret</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>A novel coronavirus associated with severe acute respiratory syndrome</article-title>
.
<source>N Engl J Med</source>
<volume>348</volume>
:
<fpage>1953</fpage>
<lpage>1966</lpage>
.
<pub-id pub-id-type="pmid">12690092</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Peiris1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Peiris</surname>
<given-names>JSM</given-names>
</name>
,
<name>
<surname>Lai</surname>
<given-names>ST</given-names>
</name>
,
<name>
<surname>Poon</surname>
<given-names>LLM</given-names>
</name>
,
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yam</surname>
<given-names>LYC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Coronavirus as a possible cause of severe acute respiratory syndrome</article-title>
.
<source>Lancet</source>
<volume>361</volume>
:
<fpage>1319</fpage>
<lpage>1325</lpage>
.
<pub-id pub-id-type="pmid">12711465</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-ProMEDmail1">
<label>6</label>
<mixed-citation publication-type="other">ProMED-mail. (2012) Novel coronavirus - Saudi Arabia: human isolate. 20 Sep: 20120920.1302733. <
<ext-link ext-link-type="uri" xlink:href="http://www.promedmail.org">http://www.promedmail.org</ext-link>
> Accessed 26 Apr 2013.</mixed-citation>
</ref>
<ref id="ppat.1003565-Vijaykrishna1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vijaykrishna</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>JX</given-names>
</name>
,
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Evolutionary insights into the ecology of coronaviruses</article-title>
.
<source>J Virol</source>
<volume>81</volume>
:
<fpage>4012</fpage>
<lpage>4020</lpage>
.
<pub-id pub-id-type="pmid">17267506</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Pfefferle1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pfefferle</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Oppong</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Drexler</surname>
<given-names>JF</given-names>
</name>
,
<name>
<surname>Gloza-Rausch</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Ipsen</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana</article-title>
.
<source>Emerg Infect Dis</source>
<volume>15</volume>
:
<fpage>1377</fpage>
<lpage>1384</lpage>
.
<pub-id pub-id-type="pmid">19788804</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-GlozaRausch1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gloza-Rausch</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Ipsen</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Seebens</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Gottsche</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Panning</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Detection and prevalence patterns of group I coronaviruses in bats, northern Germany</article-title>
.
<source>Emerg Infect Dis</source>
<volume>14</volume>
:
<fpage>626</fpage>
<lpage>631</lpage>
.
<pub-id pub-id-type="pmid">18400147</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Huynh1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Huynh</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Yount</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sturges</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Evidence supporting a zoonotic origin of human coronavirus strain NL63</article-title>
.
<source>J Virol</source>
<volume>86</volume>
:
<fpage>12816</fpage>
<lpage>12825</lpage>
.
<pub-id pub-id-type="pmid">22993147</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-vanBoheemen1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>de Graaf</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lauber</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
,
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans</article-title>
.
<source>MBio</source>
<volume>3</volume>
:
<fpage>e00473</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="pmid">23170002</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Bermingham1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bermingham</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Chand</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>CS</given-names>
</name>
,
<name>
<surname>Aarons</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Tong</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012</article-title>
.
<source>Euro Surveill</source>
<volume>17</volume>
:
<fpage>20290</fpage>
.
<pub-id pub-id-type="pmid">23078800</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-ProMEDmail2">
<label>13</label>
<mixed-citation publication-type="other">ProMED-mail. (2013) MERS-CoV - Eastern Mediterranean (31): Jordan, retro. case ID, WHO, RFI. 17 June: 20130617.1777989 <
<ext-link ext-link-type="uri" xlink:href="http://www.promedmail.org">http://www.promedmail.org</ext-link>
> Accessed 18 June 2013.</mixed-citation>
</ref>
<ref id="ppat.1003565-Raj1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
,
<name>
<surname>Mou</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
,
<name>
<surname>Dekkers</surname>
<given-names>DH</given-names>
</name>
,
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
.
<source>Nature</source>
<volume>495</volume>
:
<fpage>251</fpage>
<lpage>254</lpage>
.
<pub-id pub-id-type="pmid">23486063</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Minskaia1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Minskaia</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Hertzig</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Campanacci</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Cambillau</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>103</volume>
:
<fpage>5108</fpage>
<lpage>5113</lpage>
.
<pub-id pub-id-type="pmid">16549795</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Gorbalenya1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
(
<year>2006</year>
)
<article-title>Nidovirales: evolving the largest RNA virus genome</article-title>
.
<source>Virus Res</source>
<volume>117</volume>
:
<fpage>17</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="pmid">16503362</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Smith1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>EC</given-names>
</name>
,
<name>
<surname>Denison</surname>
<given-names>MR</given-names>
</name>
(
<year>2012</year>
)
<article-title>Implications of altered replication fidelity on the evolution and pathogenesis of coronaviruses</article-title>
.
<source>Curr Opin Virol</source>
<volume>2</volume>
:
<fpage>519</fpage>
<lpage>524</lpage>
.
<pub-id pub-id-type="pmid">22857992</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Zuo1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zuo</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Deutscher</surname>
<given-names>MP</given-names>
</name>
(
<year>2001</year>
)
<article-title>Exoribonuclease superfamilies: structural analysis and phylogenetic distribution</article-title>
.
<source>Nucleic Acids Res</source>
<volume>29</volume>
:
<fpage>1017</fpage>
<lpage>1026</lpage>
.
<pub-id pub-id-type="pmid">11222749</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Eckerle1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eckerle</surname>
<given-names>LD</given-names>
</name>
,
<name>
<surname>Becker</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Halpin</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Venter</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing</article-title>
.
<source>PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1000896</fpage>
.
<pub-id pub-id-type="pmid">20463816</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Eckerle2">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eckerle</surname>
<given-names>LD</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Sperry</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Choi</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Denison</surname>
<given-names>MR</given-names>
</name>
(
<year>2007</year>
)
<article-title>High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants</article-title>
.
<source>J Virol</source>
<volume>81</volume>
:
<fpage>12135</fpage>
<lpage>12144</lpage>
.
<pub-id pub-id-type="pmid">17804504</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Graham1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Graham</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Becker</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Eckerle</surname>
<given-names>LD</given-names>
</name>
,
<name>
<surname>Bolles</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Denison</surname>
<given-names>MR</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease</article-title>
.
<source>Nat Med</source>
<volume>18</volume>
:
<fpage>1820</fpage>
<lpage>1826</lpage>
.
<pub-id pub-id-type="pmid">23142821</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Bouvet1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bouvet</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Imbert</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Subissi</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Gluais</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Canard</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>109</volume>
:
<fpage>9372</fpage>
<lpage>9377</lpage>
.
<pub-id pub-id-type="pmid">22635272</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Crotty1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crotty</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Andino</surname>
<given-names>R</given-names>
</name>
(
<year>2001</year>
)
<article-title>RNA virus error catastrophe: direct molecular test by using ribavirin</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>98</volume>
:
<fpage>6895</fpage>
<lpage>6900</lpage>
.
<pub-id pub-id-type="pmid">11371613</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Crotty2">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crotty</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Maag</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Arnold</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Zhong</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Lau</surname>
<given-names>JY</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen</article-title>
.
<source>Nat Med</source>
<volume>6</volume>
:
<fpage>1375</fpage>
<lpage>1379</lpage>
.
<pub-id pub-id-type="pmid">11100123</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Chiou1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chiou</surname>
<given-names>HE</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Buttrey</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Kuo</surname>
<given-names>HP</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>HW</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers</article-title>
.
<source>Chest</source>
<volume>128</volume>
:
<fpage>263</fpage>
<lpage>272</lpage>
.
<pub-id pub-id-type="pmid">16002945</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Muller1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muller</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Dresser</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Raboud</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>McGeer</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Rea</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Adverse events associated with high-dose ribavirin: evidence from the Toronto outbreak of severe acute respiratory syndrome</article-title>
.
<source>Pharmacotherapy</source>
<volume>27</volume>
:
<fpage>494</fpage>
<lpage>503</lpage>
.
<pub-id pub-id-type="pmid">17381375</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Barnard1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Barnard</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>CW</given-names>
</name>
,
<name>
<surname>Bailey</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Heiner</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Montgomery</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin</article-title>
.
<source>Antiviral Res</source>
<volume>71</volume>
:
<fpage>53</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="pmid">16621037</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Stockman1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stockman</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Bellamy</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Garner</surname>
<given-names>P</given-names>
</name>
(
<year>2006</year>
)
<article-title>SARS: systematic review of treatment effects</article-title>
.
<source>PLoS Med</source>
<volume>3</volume>
:
<fpage>e343</fpage>
.
<pub-id pub-id-type="pmid">16968120</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-GrandePerez1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Grande-Perez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sierra</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Castro</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Lowenstein</surname>
<given-names>PR</given-names>
</name>
(
<year>2002</year>
)
<article-title>Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>99</volume>
:
<fpage>12938</fpage>
<lpage>12943</lpage>
.
<pub-id pub-id-type="pmid">12215495</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Yount1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yount</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Denison</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Weiss</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
(
<year>2002</year>
)
<article-title>Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59</article-title>
.
<source>J Virol</source>
<volume>76</volume>
:
<fpage>11065</fpage>
<lpage>11078</lpage>
.
<pub-id pub-id-type="pmid">12368349</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Yount2">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yount</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Curtis</surname>
<given-names>KM</given-names>
</name>
,
<name>
<surname>Fritz</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Hensley</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>Jahrling</surname>
<given-names>PB</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>100</volume>
:
<fpage>12995</fpage>
<lpage>13000</lpage>
.
<pub-id pub-id-type="pmid">14569023</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Livak1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Livak</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Schmittgen</surname>
<given-names>TD</given-names>
</name>
(
<year>2001</year>
)
<article-title>Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method</article-title>
.
<source>Methods</source>
<volume>25</volume>
:
<fpage>402</fpage>
<lpage>408</lpage>
.
<pub-id pub-id-type="pmid">11846609</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Donaldson1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Donaldson</surname>
<given-names>EF</given-names>
</name>
,
<name>
<surname>Sims</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Graham</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Denison</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
(
<year>2007</year>
)
<article-title>Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis</article-title>
.
<source>J Virol</source>
<volume>81</volume>
:
<fpage>6356</fpage>
<lpage>6368</lpage>
.
<pub-id pub-id-type="pmid">17392363</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Donaldson2">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Donaldson</surname>
<given-names>EF</given-names>
</name>
,
<name>
<surname>Sims</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Deming</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
(
<year>2006</year>
)
<article-title>Mutational analysis of MHV-A59 replicase protein-nsp10</article-title>
.
<source>Adv Exp Med Biol</source>
<volume>581</volume>
:
<fpage>61</fpage>
<lpage>66</lpage>
.
<pub-id pub-id-type="pmid">17037505</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Gnadig1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gnadig</surname>
<given-names>NF</given-names>
</name>
,
<name>
<surname>Beaucourt</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Campagnola</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Borderia</surname>
<given-names>AV</given-names>
</name>
,
<name>
<surname>Sanz-Ramos</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Coxsackievirus B3 mutator strains are attenuated in vivo</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>109</volume>
:
<fpage>E2294</fpage>
<lpage>2303</lpage>
.
<pub-id pub-id-type="pmid">22853955</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Li1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Durbin</surname>
<given-names>R</given-names>
</name>
(
<year>2009</year>
)
<article-title>Fast and accurate short read alignment with Burrows-Wheeler transform</article-title>
.
<source>Bioinformatics</source>
<volume>25</volume>
:
<fpage>1754</fpage>
<lpage>1760</lpage>
.
<pub-id pub-id-type="pmid">19451168</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Li2">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Handsaker</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Wysoker</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Fennell</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ruan</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>The Sequence Alignment/Map format and SAMtools</article-title>
.
<source>Bioinformatics</source>
<volume>25</volume>
:
<fpage>2078</fpage>
<lpage>2079</lpage>
.
<pub-id pub-id-type="pmid">19505943</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Crotty3">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crotty</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cameron</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Andino</surname>
<given-names>R</given-names>
</name>
(
<year>2002</year>
)
<article-title>Ribavirin's antiviral mechanism of action: lethal mutagenesis</article-title>
?
<source>J Mol Med (Berl)</source>
<volume>80</volume>
:
<fpage>86</fpage>
<lpage>95</lpage>
.
<pub-id pub-id-type="pmid">11907645</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Agudo1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agudo</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ferrer-Orta</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Arias</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>de la Higuera</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Perales</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape</article-title>
.
<source>PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1001072</fpage>
.
<pub-id pub-id-type="pmid">20865120</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Arias1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arias</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Arnold</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Sierra</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Smidansky</surname>
<given-names>ED</given-names>
</name>
,
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Determinants of RNA-dependent RNA polymerase (in)fidelity revealed by kinetic analysis of the polymerase encoded by a foot-and-mouth disease virus mutant with reduced sensitivity to ribavirin</article-title>
.
<source>J Virol</source>
<volume>82</volume>
:
<fpage>12346</fpage>
<lpage>12355</lpage>
.
<pub-id pub-id-type="pmid">18829745</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Maag1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Maag</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Castro</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Hong</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</name>
(
<year>2001</year>
)
<article-title>Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin</article-title>
.
<source>J Biol Chem</source>
<volume>276</volume>
:
<fpage>46094</fpage>
<lpage>46098</lpage>
.
<pub-id pub-id-type="pmid">11602568</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Sierra1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sierra</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Airaksinen</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Gonzalez-Lopez</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Agudo</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Arias</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe</article-title>
.
<source>J Virol</source>
<volume>81</volume>
:
<fpage>2012</fpage>
<lpage>2024</lpage>
.
<pub-id pub-id-type="pmid">17151116</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Kamiya1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kamiya</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Plunkett</surname>
<given-names>W</given-names>
</name>
(
<year>1996</year>
)
<article-title>Inhibition of the 3′→5′ exonuclease of human DNA polymerase epsilon by fludarabine-terminated DNA</article-title>
.
<source>J Biol Chem</source>
<volume>271</volume>
:
<fpage>19428</fpage>
<lpage>19435</lpage>
.
<pub-id pub-id-type="pmid">8702631</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Lim1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lim</surname>
<given-names>SE</given-names>
</name>
,
<name>
<surname>Copeland</surname>
<given-names>WC</given-names>
</name>
(
<year>2001</year>
)
<article-title>Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma</article-title>
.
<source>J Biol Chem</source>
<volume>276</volume>
:
<fpage>23616</fpage>
<lpage>23623</lpage>
.
<pub-id pub-id-type="pmid">11319228</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Johnson1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Johnson</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Ray</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Hanes</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Suo</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Colacino</surname>
<given-names>JM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2001</year>
)
<article-title>Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase</article-title>
.
<source>J Biol Chem</source>
<volume>276</volume>
:
<fpage>40847</fpage>
<lpage>40857</lpage>
.
<pub-id pub-id-type="pmid">11526116</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Lee1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Hanes</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Johnson</surname>
<given-names>KA</given-names>
</name>
(
<year>2003</year>
)
<article-title>Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase</article-title>
.
<source>Biochemistry</source>
<volume>42</volume>
:
<fpage>14711</fpage>
<lpage>14719</lpage>
.
<pub-id pub-id-type="pmid">14674745</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Arnold1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arnold</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>SD</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>JY</given-names>
</name>
,
<name>
<surname>Ray</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Smidansky</surname>
<given-names>ED</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides</article-title>
.
<source>PLoS Pathog</source>
<volume>8</volume>
:
<fpage>e1003030</fpage>
.
<pub-id pub-id-type="pmid">23166498</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Coffey1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Coffey</surname>
<given-names>LL</given-names>
</name>
,
<name>
<surname>Beeharry</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Borderia</surname>
<given-names>AV</given-names>
</name>
,
<name>
<surname>Blanc</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Vignuzzi</surname>
<given-names>M</given-names>
</name>
(
<year>2011</year>
)
<article-title>Arbovirus high fidelity variant loses fitness in mosquitoes and mice</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>108</volume>
:
<fpage>16038</fpage>
<lpage>16043</lpage>
.
<pub-id pub-id-type="pmid">21896755</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Vignuzzi1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vignuzzi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wendt</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Andino</surname>
<given-names>R</given-names>
</name>
(
<year>2008</year>
)
<article-title>Engineering attenuated virus vaccines by controlling replication fidelity</article-title>
.
<source>Nat Med</source>
<volume>14</volume>
:
<fpage>154</fpage>
<lpage>161</lpage>
.
<pub-id pub-id-type="pmid">18246077</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Pfeiffer1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pfeiffer</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Kirkegaard</surname>
<given-names>K</given-names>
</name>
(
<year>2003</year>
)
<article-title>A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>100</volume>
:
<fpage>7289</fpage>
<lpage>7294</lpage>
.
<pub-id pub-id-type="pmid">12754380</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Streeter1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Streeter</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Witkowski</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Khare</surname>
<given-names>GP</given-names>
</name>
,
<name>
<surname>Sidwell</surname>
<given-names>RW</given-names>
</name>
,
<name>
<surname>Bauer</surname>
<given-names>RJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>1973</year>
)
<article-title>Mechanism of action of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>70</volume>
:
<fpage>1174</fpage>
<lpage>1178</lpage>
.
<pub-id pub-id-type="pmid">4197928</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Carter1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Carter</surname>
<given-names>SB</given-names>
</name>
,
<name>
<surname>Franklin</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>DF</given-names>
</name>
,
<name>
<surname>Leonard</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Mills</surname>
<given-names>SD</given-names>
</name>
,
<etal>et al</etal>
(
<year>1969</year>
)
<article-title>Mycophenolic acid: an anti-cancer compound with unusual properties</article-title>
.
<source>Nature</source>
<volume>223</volume>
:
<fpage>848</fpage>
<lpage>850</lpage>
.
<pub-id pub-id-type="pmid">5799033</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Carr1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Carr</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Papp</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Natsumeda</surname>
<given-names>Y</given-names>
</name>
(
<year>1993</year>
)
<article-title>Characterization of human type I and type II IMP dehydrogenases</article-title>
.
<source>J Biol Chem</source>
<volume>268</volume>
:
<fpage>27286</fpage>
<lpage>27290</lpage>
.
<pub-id pub-id-type="pmid">7903306</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Franklin1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Franklin</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Cook</surname>
<given-names>JM</given-names>
</name>
(
<year>1969</year>
)
<article-title>The inhibition of nucleic acid synthesis by mycophenolic acid</article-title>
.
<source>Biochem J</source>
<volume>113</volume>
:
<fpage>515</fpage>
<lpage>524</lpage>
.
<pub-id pub-id-type="pmid">5807210</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Takhampunya1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Takhampunya</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ubol</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Houng</surname>
<given-names>HS</given-names>
</name>
,
<name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Padmanabhan</surname>
<given-names>R</given-names>
</name>
(
<year>2006</year>
)
<article-title>Inhibition of dengue virus replication by mycophenolic acid and ribavirin</article-title>
.
<source>J Gen Virol</source>
<volume>87</volume>
:
<fpage>1947</fpage>
<lpage>1952</lpage>
.
<pub-id pub-id-type="pmid">16760396</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Domingo1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Sheldon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Perales</surname>
<given-names>C</given-names>
</name>
(
<year>2012</year>
)
<article-title>Viral quasispecies evolution</article-title>
.
<source>Microbiol Mol Biol Rev</source>
<volume>76</volume>
:
<fpage>159</fpage>
<lpage>216</lpage>
.
<pub-id pub-id-type="pmid">22688811</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Ibarra1">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ibarra</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Pfeiffer</surname>
<given-names>JK</given-names>
</name>
(
<year>2009</year>
)
<article-title>Reduced ribavirin antiviral efficacy via nucleoside transporter-mediated drug resistance</article-title>
.
<source>J Virol</source>
<volume>83</volume>
:
<fpage>4538</fpage>
<lpage>4547</lpage>
.
<pub-id pub-id-type="pmid">19244331</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Shah1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shah</surname>
<given-names>NR</given-names>
</name>
,
<name>
<surname>Sunderland</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Grdzelishvili</surname>
<given-names>VZ</given-names>
</name>
(
<year>2010</year>
)
<article-title>Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin</article-title>
.
<source>PLoS ONE</source>
<volume>5</volume>
:
<fpage>e11265</fpage>
.
<pub-id pub-id-type="pmid">20582319</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Cinatl1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Morgenstern</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Bauer</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Chandra</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Rabenau</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus</article-title>
.
<source>Lancet</source>
<volume>361</volume>
:
<fpage>2045</fpage>
<lpage>2046</lpage>
.
<pub-id pub-id-type="pmid">12814717</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Moreno1">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moreno</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Tejero</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>de la Torre</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Martin</surname>
<given-names>V</given-names>
</name>
(
<year>2012</year>
)
<article-title>Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e32550</fpage>
.
<pub-id pub-id-type="pmid">22442668</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Agudo2">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agudo</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Arias</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Pariente</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Perales</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Escarmis</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis</article-title>
.
<source>J Mol Biol</source>
<volume>382</volume>
:
<fpage>652</fpage>
<lpage>666</lpage>
.
<pub-id pub-id-type="pmid">18662697</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-delaTorre1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>de la Torre</surname>
<given-names>JC</given-names>
</name>
(
<year>2005</year>
)
<article-title>Arenavirus extinction through lethal mutagenesis</article-title>
.
<source>Virus Res</source>
<volume>107</volume>
:
<fpage>207</fpage>
<lpage>214</lpage>
.
<pub-id pub-id-type="pmid">15649566</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Agudo3">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agudo</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Arias</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
(
<year>2009</year>
)
<article-title>5-fluorouracil in lethal mutagenesis of foot-and-mouth disease virus</article-title>
.
<source>Future Med Chem</source>
<volume>1</volume>
:
<fpage>529</fpage>
<lpage>539</lpage>
.
<pub-id pub-id-type="pmid">21426129</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Arnold2">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arnold</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Vignuzzi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Stone</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Andino</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</name>
(
<year>2005</year>
)
<article-title>Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase</article-title>
.
<source>J Biol Chem</source>
<volume>280</volume>
:
<fpage>25706</fpage>
<lpage>25716</lpage>
.
<pub-id pub-id-type="pmid">15878882</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Gong1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gong</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Peersen</surname>
<given-names>OB</given-names>
</name>
(
<year>2010</year>
)
<article-title>Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>107</volume>
:
<fpage>22505</fpage>
<lpage>22510</lpage>
.
<pub-id pub-id-type="pmid">21148772</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Thompson1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Thompson</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Albertini</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Peersen</surname>
<given-names>OB</given-names>
</name>
(
<year>2007</year>
)
<article-title>Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions</article-title>
.
<source>J Mol Biol</source>
<volume>366</volume>
:
<fpage>1459</fpage>
<lpage>1474</lpage>
.
<pub-id pub-id-type="pmid">17223130</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Prindle1">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Prindle</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Schmitt</surname>
<given-names>MW</given-names>
</name>
,
<name>
<surname>Parmeggiani</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Loeb</surname>
<given-names>LA</given-names>
</name>
(
<year>2013</year>
)
<article-title>A substitution in the fingers domain of DNA polymerase delta reduces fidelity by altering nucleotide discrimination in the catalytic site</article-title>
.
<source>J Biol Chem</source>
<volume>288</volume>
:
<fpage>5572</fpage>
<lpage>5580</lpage>
.
<pub-id pub-id-type="pmid">23283971</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Graci1">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Graci</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Gnadig</surname>
<given-names>NF</given-names>
</name>
,
<name>
<surname>Galarraga</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Castro</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Vignuzzi</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Mutational robustness of an RNA virus influences sensitivity to lethal mutagenesis</article-title>
.
<source>J Virol</source>
<volume>86</volume>
:
<fpage>2869</fpage>
<lpage>2873</lpage>
.
<pub-id pub-id-type="pmid">22190724</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Vignuzzi2">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vignuzzi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Stone</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Arnold</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Andino</surname>
<given-names>R</given-names>
</name>
(
<year>2006</year>
)
<article-title>Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population</article-title>
.
<source>Nature</source>
<volume>439</volume>
:
<fpage>344</fpage>
<lpage>348</lpage>
.
<pub-id pub-id-type="pmid">16327776</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Denison1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Denison</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Graham</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Donaldson</surname>
<given-names>EF</given-names>
</name>
,
<name>
<surname>Eckerle</surname>
<given-names>LD</given-names>
</name>
,
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
(
<year>2011</year>
)
<article-title>Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity</article-title>
.
<source>RNA Biol</source>
<volume>8</volume>
:
<fpage>270</fpage>
<lpage>279</lpage>
.
<pub-id pub-id-type="pmid">21593585</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Mi1">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Durbin</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>HV</given-names>
</name>
,
<name>
<surname>Rice</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Stollar</surname>
<given-names>V</given-names>
</name>
(
<year>1989</year>
)
<article-title>Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1</article-title>
.
<source>Virology</source>
<volume>170</volume>
:
<fpage>385</fpage>
<lpage>391</lpage>
.
<pub-id pub-id-type="pmid">2728344</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Scheidel1">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Scheidel</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Stollar</surname>
<given-names>V</given-names>
</name>
(
<year>1991</year>
)
<article-title>Mutations that confer resistance to mycophenolic acid and ribavirin on Sindbis virus map to the nonstructural protein nsP1</article-title>
.
<source>Virology</source>
<volume>181</volume>
:
<fpage>490</fpage>
<lpage>499</lpage>
.
<pub-id pub-id-type="pmid">1826574</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Manns1">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Manns</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Foster</surname>
<given-names>GR</given-names>
</name>
,
<name>
<surname>Rockstroh</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Zeuzem</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Zoulim</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>The way forward in HCV treatment–finding the right path</article-title>
.
<source>Nat Rev Drug Discov</source>
<volume>6</volume>
:
<fpage>991</fpage>
<lpage>1000</lpage>
.
<pub-id pub-id-type="pmid">18049473</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Cummings1">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cummings</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>West</surname>
<given-names>ES</given-names>
</name>
,
<name>
<surname>Cid-Ruzafa</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Fein</surname>
<given-names>SG</given-names>
</name>
,
<etal>et al</etal>
(
<year>2001</year>
)
<article-title>Interferon and ribavirin vs interferon alone in the re-treatment of chronic hepatitis C previously nonresponsive to interferon: A meta-analysis of randomized trials</article-title>
.
<source>JAMA</source>
<volume>285</volume>
:
<fpage>193</fpage>
<lpage>199</lpage>
.
<pub-id pub-id-type="pmid">11176813</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Davis1">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Davis</surname>
<given-names>GL</given-names>
</name>
,
<name>
<surname>Esteban-Mur</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Rustgi</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Hoefs</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Gordon</surname>
<given-names>SC</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>Interferon alfa-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group</article-title>
.
<source>N Engl J Med</source>
<volume>339</volume>
:
<fpage>1493</fpage>
<lpage>1499</lpage>
.
<pub-id pub-id-type="pmid">9819447</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-McCormick1">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>McCormick</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>King</surname>
<given-names>IJ</given-names>
</name>
,
<name>
<surname>Webb</surname>
<given-names>PA</given-names>
</name>
,
<name>
<surname>Scribner</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Craven</surname>
<given-names>RB</given-names>
</name>
,
<etal>et al</etal>
(
<year>1986</year>
)
<article-title>Lassa fever. Effective therapy with ribavirin</article-title>
.
<source>N Engl J Med</source>
<volume>314</volume>
:
<fpage>20</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="pmid">3940312</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Hall1">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hall</surname>
<given-names>CB</given-names>
</name>
,
<name>
<surname>Walsh</surname>
<given-names>EE</given-names>
</name>
,
<name>
<surname>Hruska</surname>
<given-names>JF</given-names>
</name>
,
<name>
<surname>Betts</surname>
<given-names>RF</given-names>
</name>
,
<name>
<surname>Hall</surname>
<given-names>WJ</given-names>
</name>
(
<year>1983</year>
)
<article-title>Ribavirin treatment of experimental respiratory syncytial viral infection. A controlled double-blind study in young adults</article-title>
.
<source>JAMA</source>
<volume>249</volume>
:
<fpage>2666</fpage>
<lpage>2670</lpage>
.
<pub-id pub-id-type="pmid">6341640</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Wyde1">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wyde</surname>
<given-names>PR</given-names>
</name>
(
<year>1998</year>
)
<article-title>Respiratory syncytial virus (RSV) disease and prospects for its control</article-title>
.
<source>Antiviral Res</source>
<volume>39</volume>
:
<fpage>63</fpage>
<lpage>79</lpage>
.
<pub-id pub-id-type="pmid">9806484</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Bouvet2">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bouvet</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Debarnot</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Imbert</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Selisko</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>In vitro reconstitution of SARS-coronavirus mRNA cap methylation</article-title>
.
<source>PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1000863</fpage>
.
<pub-id pub-id-type="pmid">20421945</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Chen1">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Cai</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Pan</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Xiang</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Tien</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>106</volume>
:
<fpage>3484</fpage>
<lpage>3489</lpage>
.
<pub-id pub-id-type="pmid">19208801</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Chen2">
<label>81</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Tao</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Su</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Structure-function Analysis of SARS Coronavirus RNA Cap Guanine-N7 Methyltransferase</article-title>
.
<source>J Virol</source>
<comment>[epub ahead of print] doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1128/JVI.00061-13"> 10.1128/JVI.00061-13</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Fortune1">
<label>82</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fortune</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Pavlov</surname>
<given-names>YI</given-names>
</name>
,
<name>
<surname>Welch</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Johansson</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Burgers</surname>
<given-names>PM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions</article-title>
.
<source>J Biol Chem</source>
<volume>280</volume>
:
<fpage>29980</fpage>
<lpage>29987</lpage>
.
<pub-id pub-id-type="pmid">15964835</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Karthikeyan1">
<label>83</label>
<mixed-citation publication-type="journal">
<name>
<surname>Karthikeyan</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Vonarx</surname>
<given-names>EJ</given-names>
</name>
,
<name>
<surname>Straffon</surname>
<given-names>AF</given-names>
</name>
,
<name>
<surname>Simon</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Faye</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork</article-title>
.
<source>J Mol Biol</source>
<volume>299</volume>
:
<fpage>405</fpage>
<lpage>419</lpage>
.
<pub-id pub-id-type="pmid">10860748</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-RehaKrantz1">
<label>84</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reha-Krantz</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Stocki</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Nonay</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Dimayuga</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Goodrich</surname>
<given-names>LD</given-names>
</name>
,
<etal>et al</etal>
(
<year>1991</year>
)
<article-title>DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>88</volume>
:
<fpage>2417</fpage>
<lpage>2421</lpage>
.
<pub-id pub-id-type="pmid">2006180</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Morrison1">
<label>85</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morrison</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sugino</surname>
<given-names>A</given-names>
</name>
(
<year>1994</year>
)
<article-title>The 3′→5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae</article-title>
.
<source>Mol Gen Genet</source>
<volume>242</volume>
:
<fpage>289</fpage>
<lpage>296</lpage>
.
<pub-id pub-id-type="pmid">8107676</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Shcherbakova1">
<label>86</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shcherbakova</surname>
<given-names>PV</given-names>
</name>
,
<name>
<surname>Pavlov</surname>
<given-names>YI</given-names>
</name>
,
<name>
<surname>Chilkova</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Rogozin</surname>
<given-names>IB</given-names>
</name>
,
<name>
<surname>Johansson</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Unique error signature of the four-subunit yeast DNA polymerase epsilon</article-title>
.
<source>J Biol Chem</source>
<volume>278</volume>
:
<fpage>43770</fpage>
<lpage>43780</lpage>
.
<pub-id pub-id-type="pmid">12882968</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Perales1">
<label>87</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perales</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Martin</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
(
<year>2011</year>
)
<article-title>Lethal mutagenesis of viruses</article-title>
.
<source>Curr Opin Virol</source>
<volume>1</volume>
:
<fpage>419</fpage>
<lpage>422</lpage>
.
<pub-id pub-id-type="pmid">22440845</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Sidwell1">
<label>88</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sidwell</surname>
<given-names>RW</given-names>
</name>
,
<name>
<surname>Huffman</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Khare</surname>
<given-names>GP</given-names>
</name>
,
<name>
<surname>Allen</surname>
<given-names>LB</given-names>
</name>
,
<name>
<surname>Witkowski</surname>
<given-names>JT</given-names>
</name>
,
<etal>et al</etal>
(
<year>1972</year>
)
<article-title>Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide</article-title>
.
<source>Science</source>
<volume>177</volume>
:
<fpage>705</fpage>
<lpage>706</lpage>
.
<pub-id pub-id-type="pmid">4340949</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Furuta1">
<label>89</label>
<mixed-citation publication-type="journal">
<name>
<surname>Furuta</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Takahashi</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Fukuda</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Kuno</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kamiyama</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>In vitro and in vivo activities of anti-influenza virus compound T-705</article-title>
.
<source>Antimicrob Agents Chemother</source>
<volume>46</volume>
:
<fpage>977</fpage>
<lpage>981</lpage>
.
<pub-id pub-id-type="pmid">11897578</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Baranovich1">
<label>90</label>
<mixed-citation publication-type="journal">
<name>
<surname>Baranovich</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Wong</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Armstrong</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Marjuki</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Webby</surname>
<given-names>RJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro</article-title>
.
<source>J Virol</source>
<volume>87</volume>
:
<fpage>3741</fpage>
<lpage>3751</lpage>
.
<pub-id pub-id-type="pmid">23325689</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1003565-Pfeiffer2">
<label>91</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pfeiffer</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Kirkegaard</surname>
<given-names>K</given-names>
</name>
(
<year>2005</year>
)
<article-title>Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice</article-title>
.
<source>PLoS Pathog</source>
<volume>1</volume>
:
<fpage>e11</fpage>
.
<pub-id pub-id-type="pmid">16220146</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001407 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001407 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3744431
   |texte=   Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:23966862" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021