Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001335 ( Pmc/Corpus ); précédent : 0013349; suivant : 0013360 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS Transmission Pattern in Singapore Reassessed by Viral Sequence Variation Analysis</title>
<author>
<name sortKey="Liu, Jianjun" sort="Liu, Jianjun" uniqKey="Liu J" first="Jianjun" last="Liu">Jianjun Liu</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lim, Siew Lan" sort="Lim, Siew Lan" uniqKey="Lim S" first="Siew Lan" last="Lim">Siew Lan Lim</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruan, Yijun" sort="Ruan, Yijun" uniqKey="Ruan Y" first="Yijun" last="Ruan">Yijun Ruan</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ling, Ai Ee" sort="Ling, Ai Ee" uniqKey="Ling A" first="Ai Ee" last="Ling">Ai Ee Ling</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ng, Lisa F P" sort="Ng, Lisa F P" uniqKey="Ng L" first="Lisa F. P" last="Ng">Lisa F. P. Ng</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Edison T" sort="Liu, Edison T" uniqKey="Liu E" first="Edison T" last="Liu">Edison T. Liu</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stanton, Lawrence W" sort="Stanton, Lawrence W" uniqKey="Stanton L" first="Lawrence W" last="Stanton">Lawrence W. Stanton</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hibberd, Martin L" sort="Hibberd, Martin L" uniqKey="Hibberd M" first="Martin L" last="Hibberd">Martin L. Hibberd</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">15736999</idno>
<idno type="pmc">549591</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC549591</idno>
<idno type="RBID">PMC:549591</idno>
<idno type="doi">10.1371/journal.pmed.0020043</idno>
<date when="2005">2005</date>
<idno type="wicri:Area/Pmc/Corpus">001335</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001335</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">SARS Transmission Pattern in Singapore Reassessed by Viral Sequence Variation Analysis</title>
<author>
<name sortKey="Liu, Jianjun" sort="Liu, Jianjun" uniqKey="Liu J" first="Jianjun" last="Liu">Jianjun Liu</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lim, Siew Lan" sort="Lim, Siew Lan" uniqKey="Lim S" first="Siew Lan" last="Lim">Siew Lan Lim</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruan, Yijun" sort="Ruan, Yijun" uniqKey="Ruan Y" first="Yijun" last="Ruan">Yijun Ruan</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ling, Ai Ee" sort="Ling, Ai Ee" uniqKey="Ling A" first="Ai Ee" last="Ling">Ai Ee Ling</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ng, Lisa F P" sort="Ng, Lisa F P" uniqKey="Ng L" first="Lisa F. P" last="Ng">Lisa F. P. Ng</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Edison T" sort="Liu, Edison T" uniqKey="Liu E" first="Edison T" last="Liu">Edison T. Liu</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stanton, Lawrence W" sort="Stanton, Lawrence W" uniqKey="Stanton L" first="Lawrence W" last="Stanton">Lawrence W. Stanton</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hibberd, Martin L" sort="Hibberd, Martin L" uniqKey="Hibberd M" first="Martin L" last="Hibberd">Martin L. Hibberd</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Medicine</title>
<idno type="ISSN">1549-1277</idno>
<idno type="eISSN">1549-1676</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="st1">
<title>Background</title>
<p>Epidemiological investigations of infectious disease are mainly dependent on indirect contact information and only occasionally assisted by characterization of pathogen sequence variation from clinical isolates. Direct sequence analysis of the pathogen, particularly at a population level, is generally thought to be too cumbersome, technically difficult, and expensive. We present here a novel application of mass spectrometry (MS)–based technology in characterizing viral sequence variations that overcomes these problems, and we apply it retrospectively to the severe acute respiratory syndrome (SARS) outbreak in Singapore.</p>
</sec>
<sec id="st2">
<title>Methods and Findings</title>
<p>The success rate of the MS-based analysis for detecting SARS coronavirus (SARS-CoV) sequence variations was determined to be 95% with 75 copies of viral RNA per reaction, which is sufficient to directly analyze both clinical and cultured samples. Analysis of 13 SARS-CoV isolates from the different stages of the Singapore outbreak identified nine sequence variations that could define the molecular relationship between them and pointed to a new, previously unidentified, primary route of introduction of SARS-CoV into the Singapore population. Our direct determination of viral sequence variation from a clinical sample also clarified an unresolved epidemiological link regarding the acquisition of SARS in a German patient. We were also able to detect heterogeneous viral sequences in primary lung tissues, suggesting a possible coevolution of quasispecies of virus within a single host.</p>
</sec>
<sec id="st3">
<title>Conclusion</title>
<p>This study has further demonstrated the importance of improving clinical and epidemiological studies of pathogen transmission through the use of genetic analysis and has revealed the MS-based analysis to be a sensitive and accurate method for characterizing SARS-CoV genetic variations in clinical samples. We suggest that this approach should be used routinely during outbreaks of a wide variety of agents, in order to allow the most effective control.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
<author>
<name sortKey="Kwok, Yy" uniqKey="Kwok Y">YY Kwok</name>
</author>
<author>
<name sortKey="Osterhaus, Ad" uniqKey="Osterhaus A">AD Osterhaus</name>
</author>
<author>
<name sortKey="Stohr, K" uniqKey="Stohr K">K Stöhr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marra, Ma" uniqKey="Marra M">MA Marra</name>
</author>
<author>
<name sortKey="Jones, Sj" uniqKey="Jones S">SJ Jones</name>
</author>
<author>
<name sortKey="Astell, Cr" uniqKey="Astell C">CR Astell</name>
</author>
<author>
<name sortKey="Holt, Ra" uniqKey="Holt R">RA Holt</name>
</author>
<author>
<name sortKey="Brooks Wilson, A" uniqKey="Brooks Wilson A">A Brooks-Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rota, Pa" uniqKey="Rota P">PA Rota</name>
</author>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
<author>
<name sortKey="Monroe, Ss" uniqKey="Monroe S">SS Monroe</name>
</author>
<author>
<name sortKey="Nix, Wa" uniqKey="Nix W">WA Nix</name>
</author>
<author>
<name sortKey="Campagnoli, R" uniqKey="Campagnoli R">R Campagnoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
<author>
<name sortKey="Lai, St" uniqKey="Lai S">ST Lai</name>
</author>
<author>
<name sortKey="Poon, Ll" uniqKey="Poon L">LL Poon</name>
</author>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
<author>
<name sortKey="Yam, Ly" uniqKey="Yam L">LY Yam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruan, Yj" uniqKey="Ruan Y">YJ Ruan</name>
</author>
<author>
<name sortKey="Wei, Cl" uniqKey="Wei C">CL Wei</name>
</author>
<author>
<name sortKey="Ee, La" uniqKey="Ee L">LA Ee</name>
</author>
<author>
<name sortKey="Vega, Vb" uniqKey="Vega V">VB Vega</name>
</author>
<author>
<name sortKey="Thoreau, H" uniqKey="Thoreau H">H Thoreau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
<author>
<name sortKey="Zheng, B" uniqKey="Zheng B">B Zheng</name>
</author>
<author>
<name sortKey="Poon, Ll" uniqKey="Poon L">LL Poon</name>
</author>
<author>
<name sortKey="Chan, Kh" uniqKey="Chan K">KH Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Lf" uniqKey="Ng L">LF Ng</name>
</author>
<author>
<name sortKey="Wong, M" uniqKey="Wong M">M Wong</name>
</author>
<author>
<name sortKey="Koh, S" uniqKey="Koh S">S Koh</name>
</author>
<author>
<name sortKey="Ooi, Ee" uniqKey="Ooi E">EE Ooi</name>
</author>
<author>
<name sortKey="Tang, Kf" uniqKey="Tang K">KF Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S Gunther</name>
</author>
<author>
<name sortKey="Preiser, W" uniqKey="Preiser W">W Preiser</name>
</author>
<author>
<name sortKey="Van Der Werf, S" uniqKey="Van Der Werf S">S van der Werf</name>
</author>
<author>
<name sortKey="Brodt, Hr" uniqKey="Brodt H">HR Brodt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, C" uniqKey="Ding C">C Ding</name>
</author>
<author>
<name sortKey="Cantor, Cr" uniqKey="Cantor C">CR Cantor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, Cw" uniqKey="Wong C">CW Wong</name>
</author>
<author>
<name sortKey="Albert, Tj" uniqKey="Albert T">TJ Albert</name>
</author>
<author>
<name sortKey="Vega, Vb" uniqKey="Vega V">VB Vega</name>
</author>
<author>
<name sortKey="Norton, Je" uniqKey="Norton J">JE Norton</name>
</author>
<author>
<name sortKey="Cutler, Dj" uniqKey="Cutler D">DJ Cutler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finney, Dj" uniqKey="Finney D">DJ Finney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vega, Vb" uniqKey="Vega V">VB Vega</name>
</author>
<author>
<name sortKey="Ruan, Y" uniqKey="Ruan Y">Y Ruan</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Lee, W" uniqKey="Lee W">W Lee</name>
</author>
<author>
<name sortKey="Wei, Cl" uniqKey="Wei C">CL Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vicenzi, E" uniqKey="Vicenzi E">E Vicenzi</name>
</author>
<author>
<name sortKey="Canducci, F" uniqKey="Canducci F">F Canducci</name>
</author>
<author>
<name sortKey="Pinna, D" uniqKey="Pinna D">D Pinna</name>
</author>
<author>
<name sortKey="Mancini, N" uniqKey="Mancini N">N Mancini</name>
</author>
<author>
<name sortKey="Carletti, S" uniqKey="Carletti S">S Carletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V Thiel</name>
</author>
<author>
<name sortKey="Ivanov, Ka" uniqKey="Ivanov K">KA Ivanov</name>
</author>
<author>
<name sortKey="Putics, A" uniqKey="Putics A">A Putics</name>
</author>
<author>
<name sortKey="Hertzig, T" uniqKey="Hertzig T">T Hertzig</name>
</author>
<author>
<name sortKey="Schelle, B" uniqKey="Schelle B">B Schelle</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeh, Sh" uniqKey="Yeh S">SH Yeh</name>
</author>
<author>
<name sortKey="Wang, Hy" uniqKey="Wang H">HY Wang</name>
</author>
<author>
<name sortKey="Tsai, Cy" uniqKey="Tsai C">CY Tsai</name>
</author>
<author>
<name sortKey="Kao, Cl" uniqKey="Kao C">CL Kao</name>
</author>
<author>
<name sortKey="Yang, Jy" uniqKey="Yang J">JY Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsui, Sk" uniqKey="Tsui S">SK Tsui</name>
</author>
<author>
<name sortKey="Chim, Ss" uniqKey="Chim S">SS Chim</name>
</author>
<author>
<name sortKey="Lo, Ym" uniqKey="Lo Y">YM Lo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, D" uniqKey="Xu D">D Xu</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Wang, Fs" uniqKey="Wang F">FS Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poon, Ll" uniqKey="Poon L">LL Poon</name>
</author>
<author>
<name sortKey="Chan, Kh" uniqKey="Chan K">KH Chan</name>
</author>
<author>
<name sortKey="Wong, Ok" uniqKey="Wong O">OK Wong</name>
</author>
<author>
<name sortKey="Yam, Wc" uniqKey="Yam W">WC Yam</name>
</author>
<author>
<name sortKey="Yuen, Ky" uniqKey="Yuen K">KY Yuen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Ss" uniqKey="Jiang S">SS Jiang</name>
</author>
<author>
<name sortKey="Chen, Tc" uniqKey="Chen T">TC Chen</name>
</author>
<author>
<name sortKey="Yang, Jy" uniqKey="Yang J">JY Yang</name>
</author>
<author>
<name sortKey="Hsiung, Ca" uniqKey="Hsiung C">CA Hsiung</name>
</author>
<author>
<name sortKey="Su, Ij" uniqKey="Su I">IJ Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Ek" uniqKey="Ng E">EK Ng</name>
</author>
<author>
<name sortKey="Hui, Ds" uniqKey="Hui D">DS Hui</name>
</author>
<author>
<name sortKey="Chan, Kc" uniqKey="Chan K">KC Chan</name>
</author>
<author>
<name sortKey="Hung, Ec" uniqKey="Hung E">EC Hung</name>
</author>
<author>
<name sortKey="Chiu, Rw" uniqKey="Chiu R">RW Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grant, Pr" uniqKey="Grant P">PR Grant</name>
</author>
<author>
<name sortKey="Garson, Ja" uniqKey="Garson J">JA Garson</name>
</author>
<author>
<name sortKey="Tedder, Rs" uniqKey="Tedder R">RS Tedder</name>
</author>
<author>
<name sortKey="Chan, Pk" uniqKey="Chan P">PK Chan</name>
</author>
<author>
<name sortKey="Tam, Js" uniqKey="Tam J">JS Tam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
<author>
<name sortKey="Chu, Cm" uniqKey="Chu C">CM Chu</name>
</author>
<author>
<name sortKey="Cheng, Vc" uniqKey="Cheng V">VC Cheng</name>
</author>
<author>
<name sortKey="Chan, Ks" uniqKey="Chan K">KS Chan</name>
</author>
<author>
<name sortKey="Hung, If" uniqKey="Hung I">IF Hung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurinke, C" uniqKey="Jurinke C">C Jurinke</name>
</author>
<author>
<name sortKey="Van Den Boom, D" uniqKey="Van Den Boom D">D van den Boom</name>
</author>
<author>
<name sortKey="Cantor, Cr" uniqKey="Cantor C">CR Cantor</name>
</author>
<author>
<name sortKey="Koster, H" uniqKey="Koster H">H Koster</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Med</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Med</journal-id>
<journal-id journal-id-type="publisher-id">pmed</journal-id>
<journal-id journal-id-type="pmc">plosmed</journal-id>
<journal-title-group>
<journal-title>PLoS Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1549-1277</issn>
<issn pub-type="epub">1549-1676</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">15736999</article-id>
<article-id pub-id-type="pmc">549591</article-id>
<article-id pub-id-type="doi">10.1371/journal.pmed.0020043</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline">
<subject>Biotechnology</subject>
<subject>Genetics/Genomics/Gene Therapy</subject>
<subject>Infectious Diseases</subject>
<subject>Microbiology</subject>
<subject>Epidemiology/Public Health</subject>
<subject>Health Policy</subject>
<subject>Pathology</subject>
<subject>Respiratory Medicine</subject>
</subj-group>
<subj-group subj-group-type="System Taxonomy">
<subject>Infectious Diseases</subject>
<subject>Genetics</subject>
<subject>Global health</subject>
<subject>Screening</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>SARS Transmission Pattern in Singapore Reassessed by Viral Sequence Variation Analysis</article-title>
<alt-title alt-title-type="running-head">SRAS Transmission in Singapore</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Jianjun</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="n3">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lim</surname>
<given-names>Siew Lan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ruan</surname>
<given-names>Yijun</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ling</surname>
<given-names>Ai Ee</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ng</surname>
<given-names>Lisa F. P</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Drosten</surname>
<given-names>Christian</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Edison T</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stanton</surname>
<given-names>Lawrence W</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hibberd</surname>
<given-names>Martin L</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<bold>1</bold>
<institution>Genome Institute of Singapore</institution>
<addr-line>Singapore</addr-line>
<country>Singapore</country>
</aff>
<aff id="aff2">
<bold>2</bold>
<institution>Department of Pathology, Singapore General Hospital</institution>
<country>Singapore</country>
</aff>
<aff id="aff3">
<bold>3</bold>
<institution>Bernhard Nocht Institute for Tropical Medicine, National Reference Center for Tropical Infectious Diseases</institution>
<addr-line>Hamburg</addr-line>
<country>Germany</country>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Sibbald</surname>
<given-names>William</given-names>
</name>
<role>Academic Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<institution>Sunnybrook and Women's College Health Sciences Centre</institution>
<country>Canada</country>
</aff>
<author-notes>
<fn id="n1" fn-type="COI-statement">
<p>
<bold>Competing Interests:</bold>
The authors have declared that no competing interests exist.</p>
<p>ETL is a member of the Editorial Board of
<italic>PLOS Medicine.</italic>
</p>
</fn>
<fn id="n2" fn-type="con">
<p>
<bold>Author Contributions:</bold>
JL, ETL, LWS, and MLH designed the study. JL, SLL, and CD analyzed the data. LFPN performed the experiments. YR coordinated sample acquiring and provided the genome sequence variation data for designing MS assays. AEL provided SARS-CoV samples from patients. JL, SLL, YR, AEL, LFPN, CD, ETL, LWS, and MLH contributed to writing the paper.</p>
</fn>
<corresp id="n3">*To whom correspondence should be addressed. E-mail:
<email>liuj3@gis.a-star.edu.sg</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>2</month>
<year>2005</year>
</pub-date>
<pub-date pub-type="epub">
<day>22</day>
<month>2</month>
<year>2005</year>
</pub-date>
<volume>2</volume>
<issue>2</issue>
<elocation-id>e43</elocation-id>
<history>
<date date-type="received">
<day>4</day>
<month>8</month>
<year>2004</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>12</month>
<year>2004</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © 2005 Liu et al.</copyright-statement>
<copyright-year>2005</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<related-article id="d35e264" related-article-type="companion" ext-link-type="doi" xlink:href="10.1371/journal.pmed.0020052" xlink:title="synopsis" vol="2" page="e52">
<article-title>Mass Spectometry-Based SARS Genotyping</article-title>
</related-article>
<abstract>
<sec id="st1">
<title>Background</title>
<p>Epidemiological investigations of infectious disease are mainly dependent on indirect contact information and only occasionally assisted by characterization of pathogen sequence variation from clinical isolates. Direct sequence analysis of the pathogen, particularly at a population level, is generally thought to be too cumbersome, technically difficult, and expensive. We present here a novel application of mass spectrometry (MS)–based technology in characterizing viral sequence variations that overcomes these problems, and we apply it retrospectively to the severe acute respiratory syndrome (SARS) outbreak in Singapore.</p>
</sec>
<sec id="st2">
<title>Methods and Findings</title>
<p>The success rate of the MS-based analysis for detecting SARS coronavirus (SARS-CoV) sequence variations was determined to be 95% with 75 copies of viral RNA per reaction, which is sufficient to directly analyze both clinical and cultured samples. Analysis of 13 SARS-CoV isolates from the different stages of the Singapore outbreak identified nine sequence variations that could define the molecular relationship between them and pointed to a new, previously unidentified, primary route of introduction of SARS-CoV into the Singapore population. Our direct determination of viral sequence variation from a clinical sample also clarified an unresolved epidemiological link regarding the acquisition of SARS in a German patient. We were also able to detect heterogeneous viral sequences in primary lung tissues, suggesting a possible coevolution of quasispecies of virus within a single host.</p>
</sec>
<sec id="st3">
<title>Conclusion</title>
<p>This study has further demonstrated the importance of improving clinical and epidemiological studies of pathogen transmission through the use of genetic analysis and has revealed the MS-based analysis to be a sensitive and accurate method for characterizing SARS-CoV genetic variations in clinical samples. We suggest that this approach should be used routinely during outbreaks of a wide variety of agents, in order to allow the most effective control.</p>
</sec>
</abstract>
<abstract abstract-type="toc">
<p>Mass spectrometry-based sequence analysis provides a sensitive and accurate method to characterize genetic variation of the SARS coronavirus in clinical samples</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>During infectious disease outbreaks, due to either new or established agents, extensive information gathering is required to enable identification of the source, transmission routes, and the effect of containment policies. It is becoming increasingly clear that traditional approaches based on travel and contact tracing are not sufficient for tracking an outbreak. New sequence-based techniques for pathogen detection and identification have the potential to become perhaps the most important component of these investigations, as demonstrated in the recent worldwide effort in fighting the epidemic of severe acute respiratory syndrome (SARS). The discovery of the SARS coronavirus (SARS-CoV) as the etiological agent for SARS was a major breakthrough [
<xref rid="pmed-0020043-b1" ref-type="bibr">1</xref>
], which was quickly followed by the successful sequencing of the whole genome of the virus [
<xref rid="pmed-0020043-b2" ref-type="bibr">2</xref>
,
<xref rid="pmed-0020043-b3" ref-type="bibr">3</xref>
]. Genome sequence comparison between this new coronavirus and the three known classes of coronavirus revealed a similar genome structure, but minimum homology at the amino acid level, strongly suggesting that the SARS-CoV was a new class of coronavirus [
<xref rid="pmed-0020043-b2" ref-type="bibr">2</xref>
,
<xref rid="pmed-0020043-b3" ref-type="bibr">3</xref>
,
<xref rid="pmed-0020043-b4" ref-type="bibr">4</xref>
]. A comparative sequence analysis of 14 SARS isolates from different countries suggested a moderate genetic diversity among the SARS isolates and thus implied a slow evolution of the SARS-CoV genome [
<xref rid="pmed-0020043-b5" ref-type="bibr">5</xref>
]. Furthermore, sequence variation analyses of SARS-CoV isolates demonstrated that common genetic variations in the SARS-CoV genome could be used as “molecular fingerprints” to partition the viral isolates into different genetic lineages, track the transmission of a specific viral lineage, and infer the origin of infection [
<xref rid="pmed-0020043-b5" ref-type="bibr">5</xref>
,
<xref rid="pmed-0020043-b6" ref-type="bibr">6</xref>
]. Therefore, the characterization of SARS-CoV's genetic variations is not only instrumental for understanding its genetic diversity and genome evolution but also important for tracking its transmission and understanding its epidemiological pattern in human populations.</p>
<p>Direct sequence analysis of a pathogen in a large number of clinical samples, particularly at a population level, is generally cumbersome, technically challenging, and expensive. Therefore, a rapid, sensitive, high-throughput, and cost-effective screening method would greatly facilitate large-scale characterization of genetic variation of pathogens at a population level. A mass spectrometry (MS)–based method for detecting single nucleotide polymorphisms has been routinely used as a high-throughput method for genotyping human samples, and, thus, we sought to extend this methodology to detect pathogen sequence variations. Here, we demonstrate the high sensitivity of the MS-based analysis in detecting SARS-CoV sequence variations and apply it to analyzing both cultured viral isolates and uncultured tissue samples of SARS-CoV.</p>
</sec>
<sec id="s2">
<title>Methods</title>
<sec id="s2a">
<title>Patients and Samples</title>
<p>The SARS-CoV samples used in the sensitivity study were previously described [
<xref rid="pmed-0020043-b7" ref-type="bibr">7</xref>
]. Briefly, five in vitro samples were generated by spiking 200-μl human whole-blood samples with SARS-CoV virus obtained from a Vero E6 cell culture of an anonymous Singapore patient.</p>
<p>Vero cell cultured viral isolates were obtained from 13 Singapore patients: the presumed index case (patient Sin2500) of the Singapore SARS outbreak, whose date of illness onset was 25 February 2004; three primary contacts (patients Sin2677, Sin2774, and Sin2748), whose dates of onset were 9 March 2004 (Sin2677 and Sin2774) and 14 March 2004 (Sin2748); one secondary contact (patient Sin2679), who was believed to have contracted SARS from index patient Sin2500 through another primary contact not included in this study and whose date of illness onset was 15 March 2004; and another eight patients (Sin842, Sin845, Sin846, Sin847, Sin848, Sin849, Sin850, and Sin852), who were believed to be the fifth- or six-generation contacts of index patient Sin2500 (based on contact tracing records) and whose dates of illness onset ranged from 2 April to 14 April 2004. All the patients fitted the World Health Organization case definition for probable SARS [
<xref rid="pmed-0020043-b8" ref-type="bibr">8</xref>
]. The virus was cultured in vero cells following isolation from respiratory samples (three endotracheal tube swabs, three throat swabs, one nasal swab, two nasopharyngeal aspirates, and four lung tissues) obtained from the patients between 0 and 11 d after onset of symptoms. Uncultured lung tissue samples were also obtained from patients Sin842, Sin848, Sin849, and Sin852. Bronchoalveolar lavage material was obtained from a serologically confirmed German patient with SARS who had been traveling on the same flight as an early Singaporean patient with SARS who was later hospitalized in Germany [
<xref rid="pmed-0020043-b9" ref-type="bibr">9</xref>
]. Virus could not be isolated from the sample owing to its inappropriate storage.</p>
</sec>
<sec id="s2b">
<title>RNA Extraction and cDNA Synthesis</title>
<p>For the spiked human blood samples, RNA was extracted from 200 μl of blood into 50 μl of water using a HighPure RNA kit (Roche, Basel, Switzerland). For the clinical samples, RNA was extracted into 30 μl of water using a QiAmp viral RNA mini kit (Qiagen, Valencia, California, United States). RNA samples were reverse transcribed into cDNA using 2 μl of RNA as template, a SuperScript kit (Invitrogen, Carlsbad, California, United States), and 13 sequence-specific primers [
<xref rid="pmed-0020043-b10" ref-type="bibr">10</xref>
]. All cDNA products were purified by ethanol precipitation and then resuspended in 20 μl of water.</p>
</sec>
<sec id="s2c">
<title>Real-Time Quantitative PCR Analysis</title>
<p>Real-time quantitative PCR analyses of the RNA samples from spiked human blood were performed using a Lightcycler Sars-CoV quantification kit (Roche). Each analysis was done using 1 μl of RNA and in accordance with the manufacturers' instructions.</p>
</sec>
<sec id="s2d">
<title>Single Nucleotide Variations of SARS-CoV</title>
<p>Twenty-one single nucleotide variations (SNVs) of SARS-CoV were analyzed in this study. Eight of these were identified from our previous sequence analysis of five Singapore SARS-CoV viral isolates and represent variations [
<xref rid="pmed-0020043-b5" ref-type="bibr">5</xref>
], and 13 SNVs were identified from a more recent genome sequence analysis of additional Singapore SARS-CoV viral isolates. The former eight SNVs were used in evaluating the sensitivity of MS-based genotyping analysis in detecting SARS-CoV viral genotypes, and the later 13 SNVs, as well as five of the former eight SNVs, were used to genotype the patient-derived samples.</p>
</sec>
<sec id="s2e">
<title>SNV Analysis</title>
<p>A primer extension genotyping assay was designed for each SARS-CoV SNV using SpectroDesigner software (Sequenom, San Diego, California, United States) and analyzed using the MassARRAY system (Sequenom) and the recommended protocol for the MADLI-TOF (matrix-assisted laser desorption ionization/time-of-flight) MS-based genotyping analysis [
<xref rid="pmed-0020043-b11" ref-type="bibr">11</xref>
]. One microliter of cDNA (equivalent to 0.1 μl of RNA from 1 μl of spiked human blood) was used as template in each analysis.</p>
</sec>
<sec id="s2f">
<title>Statistical Analysis of Sensitivity</title>
<p>The analytical detection limit of the combined RNA preparation/RT-PCR/MALDI-TOF MS system was determined by probit analysis [
<xref rid="pmed-0020043-b12" ref-type="bibr">12</xref>
] using the Statgraphics Plus 5.0 software package (Statistical Graphics, Jena, Germany).</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>Sensitivity for Detecting SARS-CoV SNVs</title>
<p>Prior to determining viral sequence variants in clinical samples, we measured the sensitivity of the MS-based assay for detecting SARS-CoV sequence variations by analyzing eight SNVs in in vitro human blood samples spiked with SARS-CoV. The viral RNA copy numbers in five spiked human blood samples were quantified by real-time PCR analysis and determined to be 1.64 × 10
<sup>6</sup>
(SB1), 3.84 × 10
<sup>3</sup>
(SB2), 2.17 × 10
<sup>3</sup>
(SB3), 6.21 × 10
<sup>2</sup>
(SB4), and 1.20 × 10
<sup>2</sup>
(SB5) copies per microliter (
<xref ref-type="supplementary-material" rid="sg001">Figure S1</xref>
). The three samples (SB3, SB4, and SB5) with the lowest virus copy numbers were used to determine the sensitivity of the MS-based assay.</p>
<p>We were able to successfully type the virus in 16 of the 16 analyses of the SB3 sample (equivalent to 217 RNA copies per reaction), 12 of the 15 analyses of the SB4 sample (equivalent to 62 RNA copies per reaction), and six of the 15 analyses of the SB5 sample (equivalent to 12 RNA copies per reaction). According to probit analysis, this corresponds to a 95% probability of detection when at least 75 copies of viral RNA (95% confidence interval, 59–107 copies) are present per reaction, and still a 50% detection chance at 38 copies of virus RNA per reaction (95% confidence interval, 29–53 copies). All 64 sham spiked samples gave negative genotype calls.</p>
</sec>
<sec id="s3b">
<title>Sequence Variant Determination of SARS-CoV in Viral Isolates</title>
<p>Having demonstrated the high sensitivity of the MS-based analysis, we typed 18 SARS-CoV SNVs in the cultured viral isolates from nine Singapore patients, including five early Singapore cases (Sin2500, Sin2774, Sin2748, Sin2677, and Sin2679) and four later Singapore cases (Sin842, Sin848, Sin849, and Sin852).</p>
<p>Of the 18 SNVs analyzed, nine were detected in at least two SARS isolates (
<xref ref-type="table" rid="pmed-0020043-t001">Table 1</xref>
). Assuming that a common sequence variation originated through a single mutation in a host and was then propagated by subsequent infection to others, the sharing of a specific sequence variant by different viral isolates suggests that either these viral isolates share a common ancestor or they have direct ancestor–descendant relationship. Sequence variants at the nine common SNV sites were used to reconstruct the molecular relationship among the nine viral isolates. The pattern of the shared variants among the nine viral isolates (
<xref ref-type="table" rid="pmed-0020043-t001">Table 1</xref>
) clearly indicated two major molecular lineages of isolate (
<xref ref-type="fig" rid="pmed-0020043-g001">Figure 1</xref>
). One lineage includes the four early isolates from patients Sin2500, Sin2774, Sin2748, and Sin2677, and the other includes the early isolate from patient Sin2679 and the four later isolates. The first lineage is defined by the sequence variant T:C:T at SNV positions19,084, 23,174, and 28,268, whereas the second lineage is defined by the sequence variant C:T:C. Both the variants are distinct from the presumed ancestral sequence variant C:C:C observed in the Urbani viral isolate. The later Singapore isolates were also differentiated from the early isolates by the sequence variant pattern at SNV positions 22,549 and 23,735.</p>
<fig id="pmed-0020043-g001" position="float">
<label>Figure 1</label>
<caption>
<title>The Molecular Relationship among 13 Singapore SARS-CoV Isolates Based on the Genotype Sharing Pattern of the Viral Isolates</title>
</caption>
<graphic xlink:href="pmed.0020043.g001"></graphic>
</fig>
<table-wrap id="pmed-0020043-t001" position="float">
<label>Table 1</label>
<caption>
<title>Genotypes of Five Early and Four Later Singapore SARS-CoV Isolates in 18 SNVs</title>
</caption>
<graphic xlink:href="pmed.0020043.t001"></graphic>
<table-wrap-foot>
<fn id="nt101">
<p>
<sup>a</sup>
 SNV positions are numbered according to their nucleotide positions in the genome sequence of the Urbani isolate</p>
</fn>
<fn id="nt102">
<p>NA, not analyzed</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>In addition, the sequence variant sharing pattern at SNVs 28,008, 548, 1,727, and 13,347 can further differentiate the four fifth- and six-generation isolates into three different sub-lineages (
<xref ref-type="fig" rid="pmed-0020043-g001">Figure 1</xref>
) defined by three distinct variants: C:T:T:C in the isolate from patient Sin842, T:T:T:C in the isolate from patient Sin849, and T:C:C:T in the isolates from patients Sin852 and Sin848 (
<xref ref-type="table" rid="pmed-0020043-t001">Table 1</xref>
). To further confirm this three-sub-lineage pattern observed in the later Singapore isolates, we typed another four later Singapore isolates, from patients Sin845, Sin846, Sin847, and Sin850, at five critical SNVs (19,084, 28,008, 548, 1,727, and 13,347). The detected sequence variations in the four new isolates supported the three-sub-lineage pattern in the later Singapore isolates (
<xref ref-type="table" rid="pmed-0020043-t002">Table 2</xref>
;
<xref ref-type="fig" rid="pmed-0020043-g001">Figure 1</xref>
). The second and third sub-lineages are more closely related to each other than to the first one, as all the members of the latter two sub-lineages show the variant T at SNV position 28,008, whereas the two members of the first sub-lineage show the variant C.</p>
<table-wrap id="pmed-0020043-t002" position="float">
<label>Table 2</label>
<caption>
<title>Genotypes of Two Early and Eight Later Singapore SARS-CoV Isolates at Five SNV Positions</title>
</caption>
<graphic xlink:href="pmed.0020043.t002"></graphic>
</table-wrap>
<p>The molecular relationship among the viral isolates derived from MS-based viral sequence analysis is consistent with the one derived from the whole-genome sequence analysis of the same isolates [
<xref rid="pmed-0020043-b13" ref-type="bibr">13</xref>
], clearly demonstrating that a small subset of commonly shared variances can be used as “molecular signature” to differentiate and thus track viral isolates.</p>
</sec>
<sec id="s3c">
<title>Direct Sequence Variation Determination of SARS-CoV in Primary Lung Tissue Samples</title>
<p>We also typed the 18 SNVs in four uncultured lung tissue samples from patients Sin842, Sin848, Sin849, and Sin852, and compared their sequence variations with their matched cultured isolates (
<xref ref-type="table" rid="pmed-0020043-t003">Table 3</xref>
).</p>
<table-wrap id="pmed-0020043-t003" position="float">
<label>Table 3</label>
<caption>
<title>Comparison of Paired Direct Tissue Samples and Vero Cell Cultured Isolates of SARS-CoV</title>
</caption>
<graphic xlink:href="pmed.0020043.t003"></graphic>
</table-wrap>
<p>Of the 72 direct sequence variation comparisons (18 SNVs in four sample pairs), nine differences were identified. Six of these were due to heterogeneous sequences in primary tissue samples. For example, the cultured isolate from patient Sin849 showed the sequence variant T:T:C at SNV positions 548, 1,727, and 13,347, a subset of the heterogeneous T/C:T/C:T/C variant observed in the matched lung tissue sample from the same patient. Direct comparison of the MS spectrums of the three different sequence variants (T, T/C, and C) at SNV position 1,727 in
<xref ref-type="fig" rid="pmed-0020043-g002">Figure 2</xref>
clearly ruled out the possibility of variant miscall. More interestingly, the heterogeneous variant T/C:T/C:T/C in the primary lung tissue sample revealed both of the two existing variants of T:T:C and C:C:T seen in other cultured and lung tissue samples (
<xref ref-type="table" rid="pmed-0020043-t003">Table 3</xref>
).</p>
<fig id="pmed-0020043-g002" position="float">
<label>Figure 2</label>
<caption>
<title>MS Spectrums of the Three Distinct Genotypes at SNV Position 1,727</title>
<p>The T example is from the cultured viral isolate from patient Sin849, the T/C example is from the uncultured lung tissue sample from patient Sin849, and the C example is from the cultured viral isolate from patient Sin852.</p>
</caption>
<graphic xlink:href="pmed.0020043.g002"></graphic>
</fig>
<p>In addition, another three sequence variant differences were observed between the paired cultured and tissue samples from patient Sin848 at SNV positions14,807, 26,205, and 26,509, where the tissue sample showed the sequence variant C:C:T, but the matched culture isolate showed the variant T:T:C (
<xref ref-type="table" rid="pmed-0020043-t003">Table 3</xref>
). In all three SNV positions, the cultured isolate showed novel sequence variants, whereas the primary lung tissue showed the Urbani isolate's variants (see
<xref ref-type="table" rid="pmed-0020043-t003">Table 3</xref>
).</p>
</sec>
<sec id="s3d">
<title>Confirmation of the Singapore Origin of a German SARS-CoV Isolate</title>
<p>The application of tagging and thus tracking of SARS-CoV strains using viral lineage- and/or strain-specific sequence variants was further demonstrated in our investigation of a clinical sample from a German patient. This patient stayed in Hanoi, Vietnam, before sharing an airplane flight with an early Singapore SARS patient on his way to New York via Frankfurt [
<xref rid="pmed-0020043-b9" ref-type="bibr">9</xref>
]. German health authorities assumed that this patient was infected somewhere in Hanoi, Vietnam, although the possibility of him being infected by a Singapore SARS-CoV strain during his flight to New York could not be ruled out.</p>
<p>We genotyped the virus directly from a brochoalveolar lavage specimen from the German patient at four SNV positions (19,084, 23,792, 26,428, and 27,111) that were distinctive for the early Singapore SARS-CoV isolates (see
<xref ref-type="table" rid="pmed-0020043-t001">Table 1</xref>
). The sequence of the isolate from the German patient was determined to be T:C:G:A at these SNV positions. The detection of the variant T at SNV position 19,084 in the isolate from the German patient strongly suggested that this patient was indeed infected by an early Singapore SARS-CoV strain, as the T sequence variant at position 19,084 was detected only in the early Singapore isolates [
<xref rid="pmed-0020043-b5" ref-type="bibr">5</xref>
,
<xref rid="pmed-0020043-b6" ref-type="bibr">6</xref>
] and is clearly different from the C variant at position 19,084 observed in the Vietnam-originated isolates [
<xref rid="pmed-0020043-b6" ref-type="bibr">6</xref>
,
<xref rid="pmed-0020043-b14" ref-type="bibr">14</xref>
]. Furthermore, this German isolate's sequence variant, T:C:G:A, was detected only in the isolate from the Singapore primary case Sin2748, suggesting that this German patient was probably infected by a SARS-CoV strain originating from or closely related to the SARS-CoV strain of the Singapore primary case Sin2748 and not from the Hanoi outbreak. Indeed, the T:C:G:A variant is also present in the Frankfurt-1 isolate [
<xref rid="pmed-0020043-b15" ref-type="bibr">15</xref>
], which was contracted from the early Singaporean patient traveling on the same flight as the German patient.</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>Through the application of this MS mini-sequencing approach to the SARS outbreak in Singapore we have demonstrated the precision that pathogen sequence data can add to an epidemiological investigation. We analyzed 18 SARS-CoV SNVs and determined the molecular relationship among the viral isolates from 13 Singapore SARS patients (see
<xref ref-type="fig" rid="pmed-0020043-g001">Figure 1</xref>
) from different stages of the Singapore outbreak. The molecular relationship among the patients' viral isolates derived from our MS-based viral sequence analysis is not consistent with the current understanding of the clinical transmission relations between these patients. According to contact tracing records, patient Sin2500 was believed to have been the index case of the Singapore SARS outbreak and to have introduced the SARS-CoV virus into the Singapore population following a visit to the Hotel M (Hong Kong) [
<xref rid="pmed-0020043-b5" ref-type="bibr">5</xref>
,
<xref rid="pmed-0020043-b6" ref-type="bibr">6</xref>
]. Patients Sin2774, 2748, and Sin2677 were believed to have been infected directly by the index case Sin2500, and patient Sin2679 was believed to have been infected by the index case through another, unidentified, primary patient [
<xref rid="pmed-0020043-b5" ref-type="bibr">5</xref>
]. Given the pattern of sequence variations observed in the viral isolates, in order for this presumed clinical transmission relationship among these five patients to be correct, one has to assume that during viral transmission from index case Sin2500 to secondary case Sin2679 via an unidentified primary case (two human-to-human transmissions), two reverse mutations at SNV positions 19,084 and 28,268 and one novel mutation at SNV position 23,174 occurred. Although this is not impossible, it is unlikely considering the observed mutation rate among the post–Hotel M SARS-CoV isolates [
<xref rid="pmed-0020043-b5" ref-type="bibr">5</xref>
,
<xref rid="pmed-0020043-b16" ref-type="bibr">16</xref>
,
<xref rid="pmed-0020043-b17" ref-type="bibr">17</xref>
]. A more parsimonious explanation would be a single-mutation scenario in which, instead of contracting the virus from the presumed index case Sin2500, the secondary patient Sin2679 and all the later Singapore cases were infected by a virus strain from the Hotel M cluster through another, as yet unidentified, route, and during this transmission, a novel mutation occurred at SNV position 23,174. Thus, patient Sin2679 or another unidentified Singapore patient from whom patient Sin2679 contracted SARS should be the index case of all the late-generation Singapore SARS patients. Further viral genetic characterization of additional Singapore SARS cases, especially early-generation ones, may shed light on this hypothesis. Unidentified secondary SARS-CoV infection routes from Guangdong to Hong Kong were also suggested by the genetic characterization of SARS-CoV isolates, although none of these contributed substantially to the subsequent Hong Kong outbreak [
<xref rid="pmed-0020043-b6" ref-type="bibr">6</xref>
,
<xref rid="pmed-0020043-b18" ref-type="bibr">18</xref>
].</p>
<p>A further application of MS-based viral sequence variation analysis in tracking the virus strain and thus the transmission of SARS-CoV was demonstrated by our confirmation of the Singapore origin of a SARS-CoV isolate from a German patient. Travel and contact tracing records for this German patient indicated more than one potential exposure to SARS-CoV, and because virus could not be cultured from the patient, it was difficult to pinpoint the origin of his infection by classical sequencing methods that require virus enrichment by culture. By genotyping the four SNV positions that showed unique variants in the early Singapore SARS-CoV isolates, we confirmed that this German patient was indeed infected by an early Singapore virus strain, most likely in a hitherto unnoticed aircraft transmission event from an early Singaporean patient who was later hospitalized with SARS in Germany [
<xref rid="pmed-0020043-b9" ref-type="bibr">9</xref>
]. Therefore, our results clearly demonstrate the usefulness of the sequence variation information as molecular fingerprint in “tagging” SARS-CoV viral strains.</p>
<p>Direct viral sequence variation analysis of uncultured lung tissue samples identified cases of heterogeneous viral sequences in single patient samples. As the SARS-CoV virus is a single-strand RNA virus, the discovery of different sequences in a single tissue sample suggests the presence of multiple viral sequence variants, or quasispsecies, within the host when the sample was retrieved. Our result has further confirmed a recent observation of SARS-CoV quasispecies in individual patients [
<xref rid="pmed-0020043-b19" ref-type="bibr">19</xref>
] and is consistent with observations in other viral infections. Furthermore, direct comparison between cultured and uncultured samples from the same patient confirmed the existence of the heterogeneous viral sequences only in the uncultured tissue sample, which suggests that of the two initial variants in the human host, only one survived in the vero cell culture. This raises a concern that viral genetic characterization in cultured viral isolates may not capture the whole sequence variation spectrum of a virus in a patient population.</p>
<p>Our study has clearly demonstrated the advantages of MS-based genetic analysis as a method for large-scale viral genetic characterization in clinical samples. Firstly, MS-based analysis has high sensitivity, providing successful detection of virus more than 95% of the time at virus concentrations as low as 75 RNA copies per reaction (equivalent to a detection sensitivity of 10
<sup>3</sup>
–10
<sup>4</sup>
RNA copies per milliliter), which is close to the detection limit of real-time RT-PCR based diagnostic tests (demonstrated to be 5–85 copies of viral RNA per reaction) [
<xref rid="pmed-0020043-b7" ref-type="bibr">7</xref>
,
<xref rid="pmed-0020043-b20" ref-type="bibr">20</xref>
,
<xref rid="pmed-0020043-b21" ref-type="bibr">21</xref>
,
<xref rid="pmed-0020043-b22" ref-type="bibr">22</xref>
] and within the concentration range reported for SARS-CoV in respiratory and plasma samples [
<xref rid="pmed-0020043-b9" ref-type="bibr">9</xref>
,
<xref rid="pmed-0020043-b20" ref-type="bibr">20</xref>
,
<xref rid="pmed-0020043-b22" ref-type="bibr">22</xref>
,
<xref rid="pmed-0020043-b23" ref-type="bibr">23</xref>
,
<xref rid="pmed-0020043-b24" ref-type="bibr">24</xref>
]. Typical RT-PCR sequencing usually requires as many as 1,000 copies of template, as large PCR fragments are typically amplified with less efficiency than the small fragments (about 100 bp) that are commonly used in MS-based analysis. Secondly, our detection of heterogeneous viral sequences in single clinical samples demonstrated the accuracy of the MS-based assay in characterizing SARS-CoV sequence variations. Thirdly, MS-based assay requires only a small amount of starting material for genetic characterization, 0.1 μl of RNA per reaction in the present study. Currently, MS-based genotyping analysis of human genetic variation is routinely done in a multiplex fashion, where multiple single nucleotide polymorphisms are genotyped simultaneously in a single assay. It is thus conceivable that the development of a multiplexing MS-based SNV assay for SARS-CoV could further reduce the required amount of starting material, which would be especially beneficial for analyzing uncultured clinical samples, in which viral materials are often limited. Multiplexing analysis of MS-based assays also greatly reduces the cost of analysis to about US$0.10–$0.20 per analysis (depending on the level of multiplexing), which is much cheaper than conventional sequence analysis, whose cost is typically a few dollars per analysis. Therefore, MS-based sequence variation analysis is a sensitive, accurate, cost-effective, and high-throughput method for confirming putative variations and characterizing known variations in clinical samples, especially for large-scale population studies.</p>
<p>MS-based sequence variation analysis is complementary to the identification of new sequence variation by direct sequence analysis and is particularly suitable for investigating agents for which there is already extensive sequence information. Direct sequence analysis is still the “gold standard” for identifying new sequence variations, but it is inefficient and is not necessary for characterizing known sequence variations in a large number of samples. A combination of initial characterization of genome sequence by direct sequence analysis in a subset of samples and the subsequent analysis of informative genetic variations via a MS-based approach is more efficient and suitable for large-scale population investigations. The genome sequences of a wide variety of pathogens and strains are being rapidly accumulated. In bacterial pathogens, strain sequence information is frequently limited to a relatively small number of genes (where using all of them simultaneously might be appropriate), whereas in viruses such as influenza, extensive genomic knowledge is accumulating. Such accumulation of both partial- and whole-genome sequence information for pathogens will further extend the usefulness of this approach.</p>
<p>In summary, our reassessment of the SARS-CoV transmission route in Singapore using MS-based viral sequence variation analysis highlighted the limitation of conventional epidemiological analysis based on travel and contact tracing, and the importance of informing clinical and epidemiological investigation of pathogen transmission by genetic analysis. With its demonstrated high throughput [
<xref rid="pmed-0020043-b25" ref-type="bibr">25</xref>
], sensitivity, accuracy, and cost effectiveness in determining viral sequence variations, MS-based genetic analysis can greatly facilitate the large-scale epidemiological investigations of SARS-CoV and other agents of infectious disease, and may allow for real-time investigation in outbreak situations.</p>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="sg001">
<label>Figure S1</label>
<caption>
<title>Detection of SARS-CoV by Real-Time Quantitative PCR in Spiked Human Blood Samples</title>
<p>The x-axis denotes the cycle number of the quantitative PCR assay, and the y-axis denotes fluorescence intensity (F2) over the background level. RNA standards were as follows: 1.05 × 10
<sup>6</sup>
copies per reaction (line a), 1.01 × 10
<sup>5</sup>
copies per reaction (line b), 9.4 × 10
<sup>3</sup>
copies per reaction (line c), 8.9 × 10
<sup>2</sup>
copies per reaction (line d), and 1.07 × 10
<sup>2</sup>
copies per reaction (line e). The virus loads determined in the five spiked human blood samples were as follows: SB1, 1.64 × 10
<sup>6</sup>
copies per reaction; SB2, 3.84 × 10
<sup>3</sup>
copies per reaction; SB3, 2.17 × 10
<sup>3</sup>
copies per reaction; SB4, 6.21 × 10
<sup>2</sup>
copies per reaction; and SB5, 1.20 × 10
<sup>2</sup>
copies per reaction. NTC, non-template control.</p>
<p>(244 KB DOC).</p>
</caption>
<media xlink:href="pmed.0020043.sg001.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<sec id="s5a">
<title>Accession Numbers</title>
<p>The GenBank (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/Genbank/index.html">http://www.ncbi.nlm.nih.gov/Genbank/index.html</ext-link>
) accession number for the Frankfurt-1 isolate is AY291315 and for the Urbani isolate is AY278741.</p>
<boxed-text id="box1" position="float">
<sec id="sb1">
<title>Patient Summary</title>
<sec id="sb1a">
<title></title>
<sec id="sb1a1">
<title>Background</title>
<p>Molecular biology (studying the makeup and function of molecules) is increasingly being used to track outbreaks of infectious diseases. For example, molecular biology can help to identify the cause of a disease (such as a virus, bacterium, or parasite) and understand how it spreads.</p>
</sec>
<sec id="sb1a2">
<title>Why Was This Study Done?</title>
<p>These researchers had previously used molecular biology techniques to study different strains of the SARS virus, which causes the often fatal disease called severe acute respiratory syndrome. They had found that different strains could be distinguished from each other on the basis of specific genetic “fingerprints.” They now wanted to find quick and easy ways to determine the identity of particular viral strains found in sick patients.</p>
</sec>
<sec id="sb1a3">
<title>What Did the Researchers Do?</title>
<p>They used a molecular biology technique called mass spectrometry. They took samples from patients (such as blood samples and nasal swabs) and determined whether they could detect the SARS virus, identify specific strains, and distinguish between them.</p>
</sec>
<sec id="sb1a4">
<title>What Did They Find?</title>
<p>They found that mass spectrometry is a useful tool for detecting the SARS virus and for distinguishing between different strains. They also found that they could use this tool to help understand how the SARS virus had been transmitted between specific patients.</p>
</sec>
<sec id="sb1a5">
<title>What Are the Limitations?</title>
<p>For this technique to work, the researchers needed pre-existing information about genetic differences between strains. This means that detailed DNA sequencing is necessary to find these differences in the first place and to discover new ones as the virus evolves.</p>
</sec>
<sec id="sb1a6">
<title>What Next?</title>
<p>The authors suggest that combining initial genetic sequencing of the different strains with the mass spectrometry technique to analyze subsequently large numbers of samples is the most efficient and cost-effective approach.</p>
</sec>
<sec id="sb1a7">
<title>More Information Online</title>
<p>Public access Web pages on SARS from
<italic>Science Magazine:</italic>
<ext-link ext-link-type="uri" xlink:href="http://www.sciencemag.org/feature/data/sars/">http://www.sciencemag.org/feature/data/sars/</ext-link>
</p>
<p>News article on the SARS genome on the Genome Network News Web site:
<ext-link ext-link-type="uri" xlink:href="http://www.genomenewsnetwork.org/articles/05_03/sars_3.shtml">http://www.genomenewsnetwork.org/articles/05_03/sars_3.shtml</ext-link>
</p>
<p>Genome Institute of Singapore (GIS):
<ext-link ext-link-type="uri" xlink:href="http://www.gis.a-star.edu.sg/homepage/default.jsp">http://www.gis.a-star.edu.sg/homepage/default.jsp</ext-link>
</p>
<p>GIS's press release on differences between SARS strains:
<ext-link ext-link-type="uri" xlink:href="http://www.gis.a-star.edu.sg/homepage/gismediapress.jsp?pid=19">http://www.gis.a-star.edu.sg/homepage/gismediapress.jsp?pid=19</ext-link>
</p>
</sec>
</sec>
</sec>
</boxed-text>
</sec>
</sec>
</body>
<back>
<ack>
<p>Special thanks to Dr. Eng Eong Ooi for providing the spiked human blood samples. We also want to express our special thanks to Drs. Wei Chia Lin and Christopher Wong for providing us with the primer sets for reverse transcription of RNA. We also want to thank Ms. Carine Bonnard and Mr. Mea Wee Yang for their assistance in the genotyping analysis. This study was supported by funding from the Agency for Science and Technology and Research of Singapore. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p>
</ack>
<fn-group>
<fn id="n4" fn-type="other">
<p>
<bold>Citation:</bold>
Liu J, Lim SL, Ruan Y, Ling AE, Ng LFP, et al. (2005) SARS transmission pattern in Singapore reassessed by viral sequence variation analysis. PLoS Med 2(2): e43.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="pmed-0020043-b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Kwok</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Stöhr</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The severe acute respiratory syndrome</article-title>
<source>N Engl J Med</source>
<year>2003</year>
<volume>349</volume>
<fpage>2431</fpage>
<lpage>2441</lpage>
<pub-id pub-id-type="pmid">14681510</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marra</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Astell</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Brooks-Wilson</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome sequence of the SARS-associated coronavirus</article-title>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<fpage>1399</fpage>
<lpage>1404</lpage>
<pub-id pub-id-type="pmid">12730501</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rota</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Monroe</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Nix</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Campagnoli</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of a novel coronavirus associated with severe acute respiratory syndrome</article-title>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<fpage>1394</fpage>
<lpage>1398</lpage>
<pub-id pub-id-type="pmid">12730500</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yam</surname>
<given-names>LY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coronavirus as a possible cause of severe acute respiratory syndrome</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>1319</fpage>
<lpage>1325</lpage>
<pub-id pub-id-type="pmid">12711465</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruan</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Ee</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Vega</surname>
<given-names>VB</given-names>
</name>
<name>
<surname>Thoreau</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>1779</fpage>
<lpage>1785</lpage>
<pub-id pub-id-type="pmid">12781537</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome</article-title>
<source>Lancet</source>
<year>2004</year>
<volume>363</volume>
<fpage>99</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">14726162</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ooi</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>KF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detection of severe acute respiratory syndrome coronavirus in blood of infected patients</article-title>
<source>J Clin Microbiol</source>
<year>2003</year>
<volume>42</volume>
<fpage>347</fpage>
<lpage>350</lpage>
</element-citation>
</ref>
<ref id="pmed-0020043-b8">
<element-citation publication-type="journal">
<collab>World Health Organization</collab>
<article-title>Severe acute respiratory syndrome</article-title>
<source>Wkly Epidemiol Rec</source>
<year>2003</year>
<volume>78</volume>
<fpage>81</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">12701272</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gunther</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Preiser</surname>
<given-names>W</given-names>
</name>
<name>
<surname>van der Werf</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brodt</surname>
<given-names>HR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of a novel coronavirus in patients with severe acute respiratory syndrome</article-title>
<source>N Engl J Med</source>
<year>2003</year>
<volume>348</volume>
<fpage>1967</fpage>
<lpage>1976</lpage>
<pub-id pub-id-type="pmid">12690091</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cantor</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2003</year>
<volume>100</volume>
<fpage>3059</fpage>
<lpage>3064</lpage>
<pub-id pub-id-type="pmid">12624187</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Albert</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Vega</surname>
<given-names>VB</given-names>
</name>
<name>
<surname>Norton</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Cutler</surname>
<given-names>DJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tracking the evolution of the SARS coronavirus using high-throughput, high-density resequencing arrays</article-title>
<source>Genome Res</source>
<year>2004</year>
<volume>14</volume>
<fpage>398</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="pmid">14993206</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b12">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Finney</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<source>Probit analysis, 3rd ed</source>
<year>1971</year>
<publisher-loc>Cambridge</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<lpage>333</lpage>
</element-citation>
</ref>
<ref id="pmed-0020043-b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vega</surname>
<given-names>VB</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>CL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003</article-title>
<source>BMC Infect Dis</source>
<year>2004</year>
<volume>4</volume>
<fpage>32</fpage>
<pub-id pub-id-type="pmid">15347429</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vicenzi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Canducci</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pinna</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mancini</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Carletti</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coronaviridae and SARS-associated coronavirus strain HSR1</article-title>
<source>Emerg Infect Dis</source>
<year>2004</year>
<volume>10</volume>
<fpage>413</fpage>
<lpage>418</lpage>
<pub-id pub-id-type="pmid">15109406</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thiel</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Putics</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hertzig</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schelle</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanisms and enzymes involved in SARS coronavirus genome expression</article-title>
<source>J Gen Virol</source>
<year>2003</year>
<volume>84</volume>
<fpage>2305</fpage>
<lpage>2315</lpage>
<pub-id pub-id-type="pmid">12917450</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b16">
<element-citation publication-type="journal">
<collab>The Chinese SARS Molecular Epidemiology Consortium</collab>
<article-title>Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<fpage>1666</fpage>
<lpage>1669</lpage>
<pub-id pub-id-type="pmid">14752165</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeh</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>JY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: Molecular epidemiology and genome evolution</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2004</year>
<volume>101</volume>
<fpage>2542</fpage>
<lpage>2547</lpage>
<pub-id pub-id-type="pmid">14983045</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsui</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Chim</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>YM</given-names>
</name>
</person-group>
<collab>Chinese University of Hong Kong Molecular SARS Research Group</collab>
<article-title>Coronavirus genomic-sequence variations and the epidemiology of the severe acute respiratory syndrome</article-title>
<source>N Engl J Med</source>
<year>2003</year>
<volume>349</volume>
<fpage>187</fpage>
<lpage>188</lpage>
<pub-id pub-id-type="pmid">12853594</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>FS</given-names>
</name>
</person-group>
<article-title>SARS-associated coronavirus quasispecies in individual patients</article-title>
<source>N Engl J Med</source>
<year>2004</year>
<volume>350</volume>
<fpage>1366</fpage>
<lpage>1377</lpage>
<pub-id pub-id-type="pmid">15044654</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poon</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>OK</given-names>
</name>
<name>
<surname>Yam</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>KY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Early diagnosis of SARS coronavirus infection by real time RT-PCR</article-title>
<source>J Clin Virol</source>
<year>2003</year>
<volume>28</volume>
<fpage>233</fpage>
<lpage>238</lpage>
<pub-id pub-id-type="pmid">14522060</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Hsiung</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>IJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sensitive and quantitative detection of severe acute respiratory syndrome coronavirus infection by real-time nested polymerase chain reaction</article-title>
<source>Clin Infect Dis</source>
<year>2004</year>
<volume>38</volume>
<fpage>293</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="pmid">14699465</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Hui</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>RW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Quantitative analysis and prognostic implication of SARS coronavirus RNA in the plasma and serum of patients with severe acute respiratory syndrome</article-title>
<source>Clin Chem</source>
<year>2003</year>
<volume>49</volume>
<fpage>1976</fpage>
<lpage>1980</lpage>
<pub-id pub-id-type="pmid">14633867</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grant</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Garson</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Tedder</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detection of SARS coronavirus in plasma by real-time RT-PCR</article-title>
<source>N Engl J Med</source>
<year>2003</year>
<volume>349</volume>
<fpage>2468</fpage>
<lpage>2469</lpage>
<pub-id pub-id-type="pmid">14681520</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>VC</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>IF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>1767</fpage>
<lpage>1772</lpage>
<pub-id pub-id-type="pmid">12781535</pub-id>
</element-citation>
</ref>
<ref id="pmed-0020043-b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jurinke</surname>
<given-names>C</given-names>
</name>
<name>
<surname>van den Boom</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cantor</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Koster</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>The use of MassARRAY technology for high throughput genotyping</article-title>
<source>Adv Biochem Eng Biotechnol</source>
<year>2002</year>
<volume>77</volume>
<fpage>57</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">12227737</pub-id>
</element-citation>
</ref>
</ref-list>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>SARS-CoV</term>
<def>
<p>severe acute respiratory syndrome coronavirus</p>
</def>
</def-item>
<def-item>
<term>MS</term>
<def>
<p>mass spectrometry</p>
</def>
</def-item>
<def-item>
<term>SARS</term>
<def>
<p>severe acute respiratory syndrome</p>
</def>
</def-item>
<def-item>
<term>SNV</term>
<def>
<p>single nucleotide variation</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001335  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001335  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021